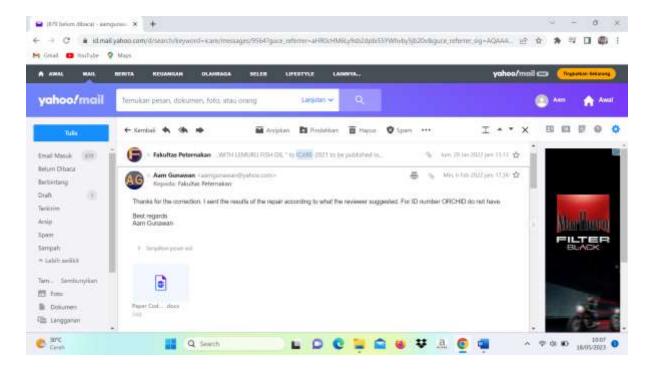

No.	Tanggal	Kegiatan
1.	28-01-2022	Submit full paper ke panitia Icare fapet IPB
2.	06-02-2022	Penyampaian hasil koreksi
3.	02-03-2022	Pemberitahuan hasil review
4.	07-03-2022	Prosesing paper dan similariti
5.	01-04-2022	Prosesing paper
6.	05-04-2022	Pembayaran untuk IOP
7.	07-04-2022	Production paper
8.	09-06-2022	Partisipasi pembayaran


Riwayat submit artikel sampai terbit di Prosiding ICARE

A ATMAL MANL	NERITA REGAMILAR OLANISAS	A SECEN LIFETYLE LAUNTIL.		yahoo/mai	il 🖙 (Representationed
yahoo/mail	icare	Lorgitan 🛩 🔗			💿 Auri 🏠 Auri
21462	Pesan Foto Dokumen	1	Pencarian terkait. 🕼	Folositas Peter.	
Enal Mesek (817)	0~	Route Brown Room Quer		Grutkan 👻	-
Refum Orbaca	2022				1 TALA
Berbiltang:	Sophes	Ad Applying Chat GPT to Cyber Defences Three Sophinkli pro	jects harmens the mod	ebel inte	MACHINE
Settore	🗇 icana, felicitate	1 (NOTICE) ICARE participant payment related (2)There you	Email Metuic	100000	www.beveler.e
ksip	E Morreuaier Team	2 Your Peper for ICANE-2021 is entering Production. Dear Arm.	Email Masuk	394/2022	biseladora Chaflanado
ipant	🗇 icere@apps.ipb.ac.id	$\hat{\mathcal{T}}_{1}^{i}$. Payment for IOP Publication . . Rescurses and Environment (.	Eroali Masak	3 5400T	Anlasmaschin Chanfreineus
lampah;	C Morresalier Team	🕸 Your Proseetings Paper for KARE-2021 your Paper submiss	Ernail Marculi	144/2018	Bevelers
 Labit sedkit 	C Moresaw Team	☆ Year Proceedings Reperfor CAUE-2021 your Paper submiss	Email Massik	2/10/0703	кромкорезы
lem Sentsunyikan	no-reply@tumilin.com	1 Similarity Report	Erwi Meuk	3 779,0002	- Andre Mart
🖽 foto	🗇 🧠 Fakultan saya Fakultan	🕆 Review result for IOP Proceeding-21001 🛞you Sincerely	Email Manuk	20000	UT I MAR
Dolumen	C Morrenzier Team	2 Your Paper to CAMD-2021 is entering Production: Dear As	Ernail Manuk	12/2/2021	20
🗄 Langgahan	Morrenser Team	2 Vera Proceedings Reper for CARLE-2021 - your Paper submi-	Email Merule	21/1/2022	

"FATTY ACID COMPOSITION OF BLACK SOLDIER FLY MAGGOT WERE REARED IN THE MIXTURE OF LAYING HEN MANURE WITH LEMURU FISH OIL"

by Aam Gunawan

Submission date: 22-Jan-2022 12:00PM (UTC+0700) Submission ID: 1745839351 File name: Paper_Code_21001_-_Aam_Gunawan.docx (53.56K) Word count: 4425 Character count: 22098

AAM GUNAWAN¹, ABD.MALIK¹, DENI RUSMANA², MUH. SYARIF DJAYA¹,

AND NENI WIDANINGSIH1

34 ¹Department of Animal Husbandry, Faculty of Agriculture, Islamic University of Kalimantan Banjarmasin JI. Adhyal 40 [o. 2 Kayu Tangi Banjarmasin Telp. (0511) 3303880 ²Faculty of Animal Husbandry, Padjadjaran University Bandung JI. Raya Bandung Sumedang KM.21, Hegarmanah, Jatimangor, Kabupaten Sumedang, Jawa Barat 45363 Telepon: (022) 84288828

ABSTRACT

Maggot black soldier fly can convert a mixture 6f layer chicken manure with lemuru fish oil into nutrient-rich biomass. The growth and nutrient composition of maggot is strongly influenced by the type of media used as food. Therefore, it is necessary to know whether the addition of lemuru fish oil into laying hens manure as a medium for maggot growth can affect the production affect maggot and the nutrient content of maggot meal, especially its fat content and fatty acid composition. In this study, the maggot black soldier fly was given six kinds of feed consisting of a mixture of laying hens manure with the addition of lemuru fish oil which varied 0%, 3%, 6%, 9%, 12%, and 15%. A total of 24 bioconv 21ers containing 2 kg of a mixture of laying hens manure with lemuru fish oil were placed 0.1 g of black soldier fly eggs in each bioconverter. Every week, 2 kg of mixed feed were added to make a total of 8 kg of manure for each bioconverter. Three weeks old maggot black soldier fly was harvested and the total production was weighed. The weight of 100 maggots was also weighed. Maggot drying is 15 ne in an oven. Samples of maggot meal in each type of mixed feed were analyzed for dry matter content, ash, crude protein, crude fiber, crude fat, calcium, phosphorus, gross er 16 y, nitrogen free extract, and fatty acid composition. The data was then analyzed for variance (ANOVA) followed by Duncan's multiple range test. The results showed that the treatment was highly significant effect on maggot production, weight of 100 maggots, and crude fat content. Supplementation of 12% lemuru fish oil resulted in the highest maggot production with an average weight of maggot which was almost the same as the addition of 15% lemuru fish oil. The fat content of maggot meal was higher10 th the increase in the use of lemuru fish oil. Lemuru fish oil supplementation was able to improve the nutritional quality of maggot meal, the fatty acid content of BSF maggot meal was quite complete and contained unsaturated fatty acids. Mixed feed of laying hens manure with 12% lemuru fish oil was the best mixture with the highest average fresh BSF maggot production of 1.139.25 g, average weight of maggot 0.19 g/maggot, crude fat content 33.87%, linoleic 6.483%, linolenic acid 0.388%, EPA 2.142 %, and DHA 0.049%. It was concluded that the 29 dition of lemuru fish oil into the manure of laying hens could enrich the unsaturated fatty acid content of maggot black soldier fly.

Key words: BSF maggot, laying hens manure, fatty acid composition

INTRODUCTION

Fish meal is a feed ingredient that is widely used as a mixture of poultry rations. The availability of fish meal is feared to decrease so that it can care price increases. Several researchers have tried to replace fish meal with maggot meal (Newton et al., 1977; Bondari and Sheppard 1981; Akago et al., 1998; Teguia et al., 2002; Awoniyi et al., 2003; Agunbiade et al., 2007; Bodri and Cole 2007; St-Hilaire et al., 2007). When compared to its nutrient content, fish meal contains higher protein and quite high essential fatty acids, while BSF maggot meal contains high crude fat but low essential fatty acid content.

The larvae of $\overline{Hermetia}$ illucens or better known as the maggot black soldier fly (BSF) are very well used as freed ingredients for protein sources to replace fish meal which has recently been imported. Maggot BSF contains about 42% protein with 35% fat content

2

Commented [A1]: italic

(Sheppard et al. 1994). The nutrient content in BSF maggots depends on the substrate used for growth, which generally uses waste, such as food waste (Ewald et al. 2020), poultry manure (Sheppard et al., 1994; Awoniyi et al., 2003), dairy cow manure (Myers et al., 2008).

Although chicken manure is suitable for reared BSF maggots, chicken manure actually lacks fat, according to Ghaly and MacDonald (2012) laying hens manure contain 6.3% fat, 42.2% crude protein, 6.5% crude fiber and 33% carbohydrates. Slightly different from that reported by Shumo et al. (2019) Chicken manure contains 2.7% fat, 15.3% crude protein, 18.3% ADF, 35.5% NDF and 86.6% organic matter. In fact, BSF maggots need a medium with a high fat content to be deposited in the body. The addition of fat or oil may help the growth of BSF larvae. Moreover, when using lemuru fish oil, it can be estimated that the BSF maggot produced will contain fat with a higher poly unsaturated fatty acid composition. But the price per kg of maggot is also higher.

Unsaturated fatty acids are needed by the human body because they can increase intelligence in children and prevent coronary heart disease in adults. Therefore, livestock products such as meat and eggs should be pultivated to contain more unsaturated fatty acids such as omega-3 and omega-6. The content of unsaturated fatty acid in in meat and eggs depends on the feed ingredients used for animal feed. Likewise, the fatty acid profile **BSF** maggots is highly dependent on the substrate used. Ewald et al. (2020) concluded that the fatty acid composition of BSF larvae was influenced by substrate feed and larval weight acids and acids acids and acids and acids acids and acids and acids a

The anino acid profile of BSF maggot meal is similar to the amino acid profile of fish meal (Atteh and Ologbenla 1993), but its fatty acid profile is not widely known. Ewald et al. (2020) reported that BSF larvae contain high levels of saturated fatty acids up 186%, Zonounsaturated fatty acids 32% and polyunsaturated fatty acids 23%. Previous studies have shown that it is possible to modify the fatty acid composition of BSF maggots. Knowledge of this fatty acid profile is verify important so that the quality of BSF maggot is relatively the same as fish meal and can be used as animal feed ingredients. Thus, the aim of this study way to investigate how chicken manure mixed with various levels of lemuru fish oil affected the fatty acid composition of BSF biomass and BSF maggot production.

MATERIAL AND METHOD

Materials

3

Commented [A2]: how is the magot price with media

Commented [AG3R2]: I added a sentences. But the price per kg of maggot is also higher

Commented [A4]: for poultry ingredient? Commented [AG5R4]: yes for various types of livestock and The materials used in this experiment included laying hens manure, lemuru fish oil and BSF fly eggs. The tools used include 24 bioconverters, scales, dryers, and equipment for nutrient content analysis.

Research procedure

(1) Egg Collection

The collection of BSF fly eggs is carried out in closed cages, so that BSF flies come to deposit their eggs using fermented palm kernel meal. BSF fly eggs obtained were collected in a petri dish.

(2) Implementation of bioconversion

There were 24 bioconverters each filled with 2 kg of chicken manure, then lemuru fish oil was added according to treatment (0, 3, 6, 9, 12, and 15% of the weight of chicken manure). Mix until homogeneous. 0.1 g of BSF fly eggs were placed on chicken manure. After hatching, 2 kg of chicken manure and lemuru fish oil were added, then repeated in the second and third weeks.

(3) Harvesting maggot

Harvesting of BSF maggots was carried out at the age of 3 weeks. The BSF maggots that have been collected are then weighed and dried at a temperature of 50 0 C.

(4) Nutrient Content Analysis

Samples of laying hens manure and BSF maggot were analyzed proximately. (5) Fat extraction and Fatty acid analysis

6

BSF maggots were mashed, then fat extraction was carried out using the Bligh and Dyer analysis (1959) method, while for fatty acid analysis using the analytical procedure of Christopher and Glass (1969) with slight modifications.

Variable Response

The independent variable in this study was the level of addition of lemuru fish oil in laying hens manure as a growth medium for BSF maggots. The dependent variables were maggot production, weight of 100 maggots, nutrient content (protein, carbohydrates, fat, crude fiber, calcium, phosphorus, fatty acids, and gross energy) and fatty acid composition.

4

Statistical Analysis

This research is a pure experiment using Completely Randomized Design (CRD) with six treatments and four repetitions. In detail the six treatments were: M1: lemuru fish oil (0%); M2: 3% lemuru fish oil; M3: 6% lemuru fish oil; M4: 9% lemuru fish oil; M5: lemuru fish oil 12%; and M6: 15% lemuru fish oil. To determine the effect of treatment, statistical analysis was carried out the F test, if there was a significant effect, then to determine differences in the levels of lemuru fish oil used, Duncan's multiple range test was carried out (Steel and Torrie, 1982).

RESULTS AND DISCUSSION

Maggot Production

The highest average BSF maggot production of 1,139.25 g was obtained in the treatment using 12% lemuru fish oil mixing level 215, and the lowest was 537.0 g in the treatment without using lemuru fish oil (M1) (Table 1). The results of the analysis of variance on the resulting maggot production data showed that the treatment had a highly significant effect (P<0.01) on the fresh maggot production produced and the results of Duncan's multiple range test showed that the treatment of mixing lemuru fish oil was significantly different from the treatment without using lemuru fish oil, the use of Lemuru fish oil resulted in higher BSF maggot production, but the best mixing rate was 12%. Levels of mixing lemuru fish oil 3, 6, 9, and 15% gave relatively the same larval production.

Table 1. Average production of fresh BSF maggots (g) and weight of 100 fresh BSF maggots based on the level of treatment of mixing lemuru fish oil with laying hens manure

Treatment	Average production of larvae (g + SEM)	Average weight of 100 fresh BSF larvae (g + SEM)
M1 (0%)	537.00 ± 15.30 ^a	13.0150 ± 0.80^{a}
M2 (3%)	869.50 <u>+</u> 36.34 ^b	15.4200 ± 0.19 ^{ab}
M3 (6%)	871.50 ± 44.08 ^b	14.4875 ± 0.71 ^a
M4 (9%)	852.75 <u>+</u> 70.24 ^b	17.8400 ± 2.05 ^{bc}
M5 (12%)	1,139.25 ± 90.10°	$18.8625 \pm 0.83^{\circ}$
M6 (15%) 2	807.75 <u>+</u> 57.99 ^b	19.3275 ± 0.79°
Distinct superscript letters	in the column indicate significant diff	ferences according to Duncan's test (P ≤

is tinct superscript letters in the column indicate significant differences according to Duncan's test ($P \le 0.05$).

The difference in the average BSF maggot production between the mixing level of 0% and 3-12%, is due to the maggot needing oil for growth and food reserves during the pupal and adult phases, by consuming lemuru fish oil and the potein contained in laying hens manure causes the maggot produced more. According to Sheppard et al. (1994) larvae of black soldier flies contain 35% fat and 42% protein, while the results of research by Ewald et al. (2020) black soldier fly larvae reared in food waste contain 40.7% fat and 36.6% protein so it needs to be provide in the media as a place of growth.

The mixing level of 15% lemuru fish oil gives lower yields compared to the mixing rate of 3-12%, this is thought to be less favored by the larvae because the media produced from this mixture is too sticky and smells fishy, which may interfere with the movement of the larvae.

The level of BSF maggot production in the media obtained in this study was relatively high, when converted it reached 7-14%. Almost the same as that reported by Lalander et al. (2019) the maggot black soldier fly was able to convert 13.9% of food waste and 7.1% of poultry manure. This high level of BSF maggot production is thought to be caused by the manure used for BSF maggot growth media is still fresh, so that the available nutrients are sufficient to apport maggot growth. According to Morgan and Eby (1975) in Tomberlin et al. (2002) larvae of other diptera species such as house flies require fresh manure every day to support optimal growth. Manure that has been in the cage for a long time may have been eaten by house fly maggots and has been digested by anaerobic organisms, resulting in less available nutrients, thereby suppressing the growth of BSF larvae. Larrain and Salas (2008) in their study used fresh manure less than 5 hours after being excreted by livestock.

Weight of 100 Maggots

The highest average weight of 100 fresh BSF maggots (Table 1) was obtained in the treatment using 15% lemuru fish oil mixing (M6) which was 19.3275 g, and the swest was in the treatment without lemuru fish oil mixing (M1) which was 13.0150 g. The results of the analysis of variance on the weight data of 100 BSF maggots showed that the treatment had an effect on the weight of 100 fresh maggots. The higher the level of mixing of lemuru fish oil tends to produce heavier maggots. This is easy to understand because maggot really needs fat/oil to support its life development.

Duncan's test results showed that between M1, M2, and M3 did not show a significant difference, as well as between M4, M5, and M6 each produced almost the same maggot weight, so it can be said that the mixing rate of 12% is the mixing level of lemuru fish oil with optimal laying hens manure.

The M6 treatment produced the largest BSF maggot weight, but in terms of total fresh maggot production it was still below the M5 treatment, this may be due to the high mortality rate of larvae at a young age, as a result of the media being too sticky from this mixing.

The BSF maggot weight obtained from the results of this study ranged from 0.1301 g/maggot on laying hens manure media without lemuru fish oil, up to 0.1933 g/maggot on 15% lemuru fish oil mixing media. The average weight of BSF maggots obtained from the results fish is study is slightly different (the resulting weight range is 0.1301-0.1933 g wider) with the results of research conducted by Tomberlin et al. (2002) who got the weight range of black soldier larvae from 0.153-0.171 g/larvae. The difference in these results is due to the difference in the media used. While Nguyen et al. (2013) obtained a larval weight of 339 mg/3 larvae or 0.113 g/larvae cultured in pig manure and Ewald et al. (2020) obtained a larval weight of 0.191 g/larvae cultured in food waste.

Nutrient Content

The average nutrient content of BSF maggot meal based on the treatments is presented in Table 2. The nutrient content between treatments was quite varied, but statistically analyzed only crude fat content, because this nutrient was closely related to the treatment given.

Nutrient		Treatment					
	M1	M2	M3	M4	M5	M6	
Water (%)	3.60	2.34	3.49	3.41	3.46	3.95	
Ash (%)	17.20	13.80	15.63	15.10	12.96	13.30	
Crude protein (%)	36.82	40.66	41.63	42.46	43.17	44.26	
Crude fiber (%)	2.69	2.90	2.56	2.50	2.75	2.50	
Crude fat (%)	24.80	26.22	28.15	32.23	33.87	34.39	
Calcium (%)	1.47	1.45	1.31	1.21	1.25	1.20	
Phosphorus (%)	0.78	0.65	0.56	0.71	0.55	0.65	
Gross energy							
(Kkal/kg)	4,214.75	4,595.00	5,265.75	5,409.50	5,585.00	5,931.75	
nitrogen-free	18.47	16.47	12.02	7.70	7.24	3.70	

Table 2 Nutrient Content of meal BSF larvae (% dry matter) based treatment

extract (%)			

The highest average crude fat content was obtained in the treatment using 15% lemuru fish oil mixing with laying hens manure (M6), which was 34.39%, and the lowest was in the treatment without using lemuru fish oil on laying hens manure medium (M1), which was 2430% (Table 2). The results of the analysis of variance on the crude fat content data showed that the treatment had a highly significant effect on the crude fat content of BSF maggot meal.

39

Table 3. Average crude fat content of BSF larvae meal (g) produced by treatment of mixing lemuru fish oil with laying hens manure

Treatment	Average crude fat content of BSF larvae meal
	(g)
M1 (0%)	$24.80 \pm 0.31^{\circ}$
M2 (3%)	26.22 <u>+</u> 0.35 ^b
M3 (6%)	$28.15 \pm 0.22^{\circ}$
M4 (9%)	32.23 ± 0.14 ^d
M5 (12%)	33.87 ± 0.23 ^e
M6 (15% 2	34.39 ± 0.62 ^e

Distinct superscript letters in the column indicate significant differences according to Duncan's test ($P \le 0.05$).

The difference in the average crude fat content of BSF maggot meal is thought to be due to differences in the size of BSF maggots. BSF maggots produced from M6 media are larger than M1 media. Larger maggots are generally able to store more fat in their bodies, so they contain higher crude fat than smaller BSF maggots.

The crude fat content of maggot BSF ranged from 24.80-34.39% (Table 3), almost the same as that reported by Shumo et al. (2019) The crude fat content of BSF maggot meal is on average 30.1% in chicken manure and 34.3% in kitchen waste. Thus, the crude fat content of BSF larvae meal is highly dependent on the media used for its growth.

11 Fatty Acid Profile

The fatty acid profile of BSF maggot meal based on the treatment is presented in 131 e 4. However, only the fatty acids that were considered essential were analyzed, namely linoleic, linolenic, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA).

Fatty acid			Treatm	ent		
	M1	M2	M3	M4	M5	M6
Miristic	6.202	6.347	7.376	7.642	7.929	7.081
Palmitic	11.230	14.163	19.675	19.545	20.673	17.436
Palmitoleic	5.580	7.808	6.869	5.904	6.067	4.749
Stearic	1.417	1.400	2.024	2.457	2.116	2.104
Oleic	16.781	17.989	19.500	18.283	17.806	14.225
Linoleic	5.765	5.562	6.649	7.068	6.483	6.682
Linolenic	0.244	0.378	0.396	0.507	0.388	0.586
EPA	0	0	2.110	1.904	2.142	1.784
DHA 8	0	0	0.168	0.092	0.049	0

Table 4 fatty acid profile (%) of BSF larvae meal based treatment

Commented [A6]: Lauric?? Commented [AG7R6]: Lauric is fatty acid of short chain, not detected because especially long chain fatty acid, it is needed for healty.

DHA = docosahexaenoic acid (22:6n-3)

Table 5. Average fatty acid content of meal BSF larvae (%) produced by treatment of mixing lemuru fish oil with laying hens manure

Fatty acid	Treatment							
	M1	M2	M3	M4	M5	M6		
Linoleic	5.765 ± 0.09^{ac}	5.562 ± 0.24°	6.649 ± 0.45^{ab}	7.068 ± 0.02^{b}	6.483 ± 0.46^{ab}	6.682 ± 0.22^{ab}		
Linolenic	0.244 ± 0.03	0.378 ± 0.04	0.396 ± 0.07	0.507 ± 0.11	0.388 ± 0.12	0.586 ± 0.05		
EPA	0 ± 0.00^{a}	0 ± 0.00^{a}	$2.110 \pm 0.12^{\circ}$	1.904 ± 0.07^{bc}	2.142 ± 0.09°	1.784 ± 0.11^{b}		
DHA	0 2-0.00ª	0 ± 0.00 ^a	0.1685 ± 0.01b	0.092 ± 0.05^{ab}	0.049 ± 0.05^{a}	0 ± 0.00^{a}		
Distinct sup	Distinct superscript letters in the column indicate significant differences according to Duncan's test (P ≤							

0.05).

Linoleic, Linolenic Fatty Acids, EPA and DHA

Linoleic and linolenic fatty acids were found in all types of media, while eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were found in media containing lemuru fish oil. Ewald et al. (2020) stated that there are great similarities between the fatty acid composition of larvae and substrates. Linoleic fatty acid content in this study ranged from 5.562-7.068% (Table 5), the percentage is less than the results of corroso et al. (2017) and Liland et al. (2017), linoleic acid (C18:2) was found in high percentages of 12-24% in larvae fed fish and chicken feed, or wheat and brown algae. And almost the same as the research of Ewald et al. (2020) of 2.6-12.5% in larvae fed bread, leftovers, fish and shellfish.

The results of analysis of variance showed that the treatment level of mixing lemuru fish oil with laying hens manure had a highly significant effect (P<0.01) on the linoleic fatty acid, EPA and DHA content of BSF maggot meal, but had no significant effect on the linolenic fatty acid content. This effect is the result of the addition of lemuru fish oil. The

results of the Agricultural Technology laboratory analysis at Gadjah Mada University Yogyakarta showed that lemuru fish oil contained linoleic, linolenic, EPA and DHA fatty acids, respectively 10.564%, 1.021%, 5.106%, and 2.966%. The addition of lemuru fish oil in laying hens manure was actually utilized by larvae and stored in the form of body fat, so that BSF maggots contained more linoleic, linolenic, EPA, and DHA fatty acids than without the addition of lemuru fish oil in laying hens manure media.

The content of linolenic fatty acid between treatments had no significant effect, this was due to the small amount of linolenic fatty acid in lemuru fish oil, namely 1.021%, so that a small amount of BSF maggot could be stockpiled. The fatty acid content of EPA and DHA began to be seen in the M3 treatment, and until the M5 treatment the EPA content was not significantly different. The DHA content was very high in the M3 treatment, but was not detected in the M6 treatment. DHA was not detected in the addition of 15% lemuru fish oil, it is possible that the larvae are no longer eating and store a lot of energy in the form of saturated fatty acids, according 19 the opinion of Ewald et al. (2020) more energy is stored in the form of unsaturated fatty acids because these fatty acids are less susceptible to oxidation than unsaturated fatty acids. Furthermore, it is said that when the larvae gain weight, the percentage of EPA and DHA decreases. Meanwhile Liu et al. (2017) found a decrease in unsaturated fatty acids over time as the black soldier fly larva (BSFL) got older. EPA and DHA were not found in the M1 and M2 treatments. This is easy to understand because the substrate contains little or no EPA and DHA according to the opinion of Liland et al. (2017) EPA (C20:5) and DHA (C22:6) were found in the larvae, most likely from the substrate.

CONCLUSIONS AND SUGGESTIONS

Conclusion

Lemuru fish oil is very well used for mixed BSF maggot growth media. The best mixture of lemuru fish oil is 12% of the weight of asfed laying hens manure, because it produces the most BSF maggot production with a fairly high average maggot weight and contains linoleic, linolenic, EPA and DHA fatty acids which are needed for Alabio duck feed supplements.

Suggestion

Commented [A8]: How the feed cost/feed price? Commented [AG9R8]: The price of maggot certainly increasing. In this research it has not been calculated.

For optimal maggot growth, it is necessary to pay attention to the fat and protein content of the media used. If the laying hens manure used contains low fat, it is better to add lemuru fish oil 12% of the weight of the laying hens manure. Laying hens manure used should be fresh manure so that the nutrients contained in it can be immediately consumed by BSF maggots, without being overhauled by microorganisms.

REFERENCES

- Agunbiade, J.A., O.A. Adeyemi, O.M. Ashiru, H.A. Awojobi, A.A. Taiwo, D.B. Oke, and A.A. Adekunmisi. 2007. Replacement of Fish Meal with Maggot Meal in Cassavabased Layers Diets. J. Poult. Sci. 44:278-282.
- Akpodiete, OJ., AD Ologhobo and AA Onifade. 1998. Maggot meal as a substitute for fish meal in laying chicken diet. *Ghana Jnl agric*. *Sci*. 31(2): 137-142
- Atteh, J.O. and S. Ologbenla. 1993. Replacement of Fish Meal with Maggots in Broilers' Diet. Nigerian Journal of Animal Production. 20:44-49.
- Awoniyi, T.A.M., V.A. Aletor and J.M. Aina. 2003. Performance of Broiler- Chickens Feed on Maggot Meal in Place of Fish Meal. *International Journal of Poultry Science* 2(4):271-274.
- Bligh, E. G. and W. J. Dyer. 1959. "A rapid method of total lipid extraction and purification," *Canadian Journal of Biochemistry and Physiology*, vol. 37, no. 8, pp. 911–917.
- Bodri, M.S. and E.R. Cole. 2007. Black Soldier Fly (*Hermetia illucens* Linnaeus) as Feed for the American Alligator (*Alligator mississippiensis* Daudin). Georgia Journal of Science 65(2): 82–88.
- Bondari, K. and D.C. Sheppard. 1981. Soldier Fly Larvae as Feed in Commercial Fish Production. Aquaculture 24: 103–109.
- Barroso, F.G., Sanchez-Muros, M.-J., Segura, M., Morote, E., Torres, A., Ramos, R., Guil, J.-L., 2017. Insects as food: Enrichment of larvae of *Hermetia illucens* with omega 3 fatty acids by means of dietary modifications. J. Food Compos. Anal. 62:8-13.
- Christopherson, S.W. and R.L. Glass. 1969. Preparation of Milk Fat Methyl Ester by Alcoholysis in an Essentially Nonalcoholoc Solution. Journal of Dairy Science.52(8)1289-1290.
- Ewald, N., A. Vidakovic, M. Langeland, Anders Kiessling, S. Sampels, and C. Lalander. 2020. Fatty acid composition of black soldier fly larvae (Hermetia illucens)-Possibilities and limitations for modification through diet. Waste management. 102: 40–47.

11

Commented [A12]: italia

Commented [A10]: How about C/N ratio?

Commented [AG11R10]: C/N ratio has not yet been measured

Ghaly, A.E. and K.N. MacDonald. 2012. Drying of Poultry Manure for Use as Animal Feed. American Journal of Agricultural and Biological Sciences 7(3):239-254.

- Lalander, C., S. Diener, C. Zurbrügg, B. Vinnerås. 2019. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). Journal of Cleaner Production. 208:211-219.
- Larrain, P.S and Salas, C.F. 2008. House Fly (*Musca domestica L.*) (Diptera: Muscidae) Development in Different Types of Manure. Chilean Journal of Agricultural Research. 68:192-197.
- Liland, N.S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C.G., Waagbo, R., Torstensen, B.E., Lock, E.-J., 2017. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 12. e0183188.
- Liu, X., Chen, X., Wang, H., Yang, Q.Q., Rehman, K.U., Li, W., Cai, M.M., Li, Q., Mazza, L., Zhang, J.B., Yu, Z.N., Zheng, L.Y., 2017. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 12, 21.
- Myers, H.M., Tomberlin, J.K., Lambert, B.D., and Kattes, D. 2008. Development of Black Soldier Fly (Diptera: Stratiomyidae) Larvae Fed Dairy Manure. *Environ. Entomol.* 37(1):11-15.
- Newton, G.L., C.V. Booram, R.W. Barker and O.M. Hale. 1977. Dried Hermetia illucens Larvae Meal as A Supplement for Swine. Journal of Animal Science 44(3):395–400.
- Nguyen, T. T. X., Jeffery K. T, and Sherah, V. 2013. Influence of Resources on *Hermetia illucens* (Diptera: Stratiomyidae) Larval Development. J. Med. Entomol. 50(4): 898-906. DOI: http://dx.doi.org/10.1603/ME12260.
- Sheppard, D.C., G.L. Newton, S.A. Thompson and S. Savage. 1994. A Value Added Manure Management System Using The Black Soldier Fly. *Bioresource Technology* 50:275-279.
- Shumo, M., I.M. Osuga, F.M. Khamis, C.M.Tanga, K.K.M. Fiaboe, S.Subramanian, S.Ekesi, A.van Huis, and C.Borgemeister. 2019. The nutritive value of black soldier fy larvae reared on common organic waste streams in Kenya. Scientific reports. 9:10110.
- Steel, R.G.D. and J.H. Torrie. 1982. Principle and Procedure of Statistics: A Biometrical Approach. Second Edition. Mc. Graw – hill International Book Co. Tokyo.
- ST-Hilaire, S., C. Sheppard, J.K. Tomberlin, S. Irving, L. Newton, M.A. McGuire, E.E. Mosley, R.W. Hardy and W. Sealey. 2007. Fly Prepupa as a Feedstuff for Rainbow Trout, Oncorhynchus mykiss. *Journal of the World Aquaculture Society* 38(1):59-67.

Teguia, A., M. Mpoame and J.A. Okourou Mba. 2002. The Production Performance of Broiler Birds as Affected by the Replacement of Fish Meal by Maggot Meal in the Starter and Finisher Diets. *Tropicultura*. 20(4):187-192.

Tomberlin, J.K., D.C. Sheppard, and J.A. Joyce. 2002. Selected Life-History Traits of Black Soldier flies (Diptera: Stratiomyidae) Reared on Three Artificial Diets. Ann. Entomol Soc. Am. 95(3):379-386.

"FATTY ACID COMPOSITION OF BLACK SOLDIER FLY MAGGOT WERE REARED IN THE MIXTURE OF LAYING HEN MANURE WITH LEMURU FISH OIL"

ORIGINALITY REPORT

SIMILA	6% RITY INDEX	12% INTERNET SOURCES	14% PUBLICATIONS	0% STUDENT PAPE	RS
PRIMAR	YSOURCES				
1	Langelar Cecilia La black sol Possibilit	ld, Aleksandar V nd, Anders Kiess alander. "Fatty dier fly larvae (cies and limitati diet", Waste Ma	sling, Sabine S acid composi Hermetia illuo ons for modif	Sampels, tion of cens) – fication	2%
2	academi	<mark>c.oup.com</mark> e			2%
3	docsdriv				1%
4	D, M.Y. N supplem the perc carcass o	wan, S. Erlina, R Noor, A.X. Lantu ent Maggot Bla entage of carca of male Alabio o arth and Enviro	i. "Effect of ick Soldier Fly iss and weigh ducks", IOP Co	v live on t of onference	1 %

5

9		%
6	cdn.aphca.org Internet Source	1%
7	"African Edible Insects As Alternative Source of Food, Oil, Protein and Bioactive Components", Springer Science and Business Media LLC, 2020 Publication	1 %
8	worldwidescience.org	<1%
9	zombiedoc.com Internet Source	<1%
10	"Bioactive Molecules in Food", Springer Science and Business Media LLC, 2019 Publication	<1 %
11	S.J.J. Schreven, S. Yener, H.J.F. van Valenberg, M. Dicke, J.J.A. van Loon. "Life on a piece of cake: performance and fatty acid profiles of black soldier fly larvae fed oilseed by- products", Journal of Insects as Food and Feed, 2021 Publication	<1 %
12	bioone.org Internet Source	<1%

14	Nina S. Liland, Irene Biancarosa, Pedro Araujo, Daan Biemans et al. "Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media", PLOS ONE, 2017 Publication	<1%
15	adoc.pub Internet Source	<1%
16	WWW.Science.gov Internet Source	<1%
17	E. Pieterse, Q. Pretorius. "Nutritional evaluation of dried larvae and pupae meal of the housefly (Musca domestica) using chemical- and broiler-based biological assays", Animal Production Science, 2014 Publication	<1%
18	M.A. El-Dakar, R.R. Ramzy, H. Ji, M. Plath. "Bioaccumulation of residual omega-3 fatty acids from industrial Schizochytrium microalgal waste using black soldier fly (Hermetia illucens) larvae", Journal of Cleaner Production, 2020 Publication	<1%
19	www.mdpi.com Internet Source	<1%

20	Brenda H Jennings, Casimir C Akoh. "Lipase catalyzed modification of fish oil to incorporate capric acid", Food Chemistry, 2001 Publication	<1%
21	gallstoneremovaltips.info	<1%
22	Roeland Wouters, César Molina, Patrick Lavens, Jorge Calderón. "Lipid composition and vitamin content of wild female Litopenaeus vannamei in different stages of sexual maturation", Aquaculture, 2001 Publication	<1%
23	Tomberlin, Jeffery K., D. Craig Sheppard, and John A. Joyce. "Selected Life-History Traits of Black Soldier Flies (Diptera: Stratiomyidae) Reared on Three Artificial Diets", Annals of the Entomological Society of America, 2002. Publication	<1 %
24	animalsciencejournal.usamv.ro	<1%
25	ejournal.undip.ac.id	<1%
26	scholar.sun.ac.za	<1%
27	www.wageningenacademic.com	<1%

28	M.J. Sánchez-Muros, F.G. Barroso, C. de Haro. "Brief Summary of Insect Usage as an Industrial Animal Feed/Feed Ingredient", Elsevier BV, 2016 Publication	<1%
29	Matteo Zarantoniello, Andrea Zimbelli, Basilio Randazzo, Martina Delli Compagni et al. "Black Soldier Fly (Hermetia illucens) reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production", Aquaculture, 2019 Publication	<1%
30	Zheng, L "Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production", Renewable Energy, 201205 Publication	<1%
31	CORE.ac.uk Internet Source	<1%
32	ecoagrijournal.com	<1 %
33	hdl.handle.net Internet Source	<1%
34	repo.unand.ac.id	<1%

35	www.bioone.org Internet Source	<1%
36	www.hindawi.com Internet Source	<1%
37	www.ncbi.nlm.nih.gov Internet Source	<1%
38	www.tandfonline.com	<1%
39	Kristin Bohm, Gregory A. Hatley, Brett H. Robinson, María J. Gutiérrez-Ginés. "Black Soldier Fly-based bioconversion of biosolids creates high-value products with low heavy metal concentrations", Resources, Conservation and Recycling, 2022 Publication	<1%
40	jppt.undip.ac.id Internet Source	<1%
41	www.ojs.udo.edu.ve	<1%

Exclude quotes

Exclude bibliography On

On

Exclude matches < 5

< 5 words

Sehubungan dengan makalah lengkap yang Anda kirimkan berjudul "KOMPOSISI ASAM LEMAK BELANGAT LALAT TENAGA HITAM DIPERBAIKI DALAM CAMPURAN PUPUK AYAM TELUR DENGAN MINYAK IKAN LEMURU" ke ICARE-2021 untuk diterbitkan dalam Seri Konferensi IOP: Ilmu Bumi dan Lingkungan. Harap pastikan untuk merevisi naskah Anda mengikuti pedoman di bawah ini:

Abstrak naskah Anda tidak lebih dari 200 kata

Referensi ditulis sesuai dengan format IOP (Pedoman terlampir)

Topik "Lingkungan" dan "Keberlanjutan" dijelaskan dengan jelas setidaknya dalam Abstrak, Pendahuluan, dan Kesimpulan dari naskah Anda.

Skor Turnitin manuskrip Anda di bawah 20 (Skor saat ini terlampir)

Setiap email institusi dan pribadi penulis, serta nomor ID ORCID wajib dilampirkan bersama dengan manuskrip

Kami meminta Anda untuk mengirimkan versi revisi naskah Anda dalam waktu seminggu untuk proses lebih lanjut.

Kami berharap untuk mendengar dari Anda.

Dear Aam Gunawan

This is with regard to your submitted full paper entitle "FATTY ACID COMPOSITION OF BLACK SOLDIER FLY MAGGOT WERE REARED IN THE MIXTURE OF LAYING HEN MANURE WITH LEMURU FISH OIL " to ICARE-2021 to be published in IOP Conference Series: Earth and Environmental Science. Please make sure to revise your manuscript following the guideline below:

- 1. Abstract of your manuscript is not exceeding 200 words
- 2. Reference is written according to IOP format (Guideline is attached)
- 3. The "Environment" and "Sustainability" topics are clearly described at least in Abstract, Introduction, and Conclusion of your manuscript.
- 4. The Turnitin score of your manuscript is below 20 (Current score is attached)
- 5. Each author institutional and personal email, as well as the ORCID ID number are required attached along with the manuscript

We request you to submit a revised version of your manuscript within a week for further process.

We look forward to hearing from you.

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

LETTER OF ACCEPTANCE

Dear Aam Gunawan, Abd. Malik, Deni Rusmana, Muh. Syarif Djaya & Neni Widaningsih

On behalf of the Scientific Committee of The 1st International Conference on Sustainable Animal Resources and Environment 2021, we are pleased to inform you that your abstract entitled **"Fatty Acid Composition Of Black Soldier Fly Maggot Were Reared In The Mixture Of Laying Hen Manure With Lemuru Fish Oil"** has been accepted for **Oral Presentation**.

Please make registration payment by Bank Transfer to Bank Account:

Bank Account Number	: 0821274605
Bank Name	: BANK NEGARA INDONESIA
Bank Account Name	: Zakiah (Dr. Zakiah Wulandari, STP, M.Si)

Please send proof of the transaction in PDF/JPG file through this link: <u>https://ipb.link/payment-icare</u>. Once the organizing committee receives your payment, we will confirm your registration and payment. The author who applies for publication has to pay an additional fee according to the type of publication.

Your abstract is currently done peer review by the International Scientific Committee, and please kindly find the comment from the reviewer. You can submit your revised abstract and full paper before October 14, 2021, through the link <u>https://ipb.link/fullpaper-icare</u> and upload your presentation file before November 3, 2021 by the link <u>https://ipb.link/ppt-icare</u>. Please note the final decision for publication will be based on the selection by the board of reviewers.

We are delighted to acknowledge your registration for the conference and are looking forward to your participation. Please feel free to contact us if you need further information regarding the preparation and presentation of your paper through our email <u>icare@apps.ipb.ac.id</u>.

Sincerely yours,

Prof. Dr. Agr. Asep Gunawan, S.Pt, M.Sc Chairman of the Organizing Commitee ICARE 2021

The 1st International Conference on Sustainable Animal Resources and Environment

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

Result of Abstract Review

Paper Code : 21001

Abstract Review:

Title	Good
Background	Good
Methods	Good
Results	Good
Conclusion	Fair

Comment for Authors: Complete the abstract with conclusion.

The 1st International Conference on Sustainable Animal Resources and Environment

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

PAPER EVALUATION

Paper Code : 21001

Paper Title: Fatty Acid Composition Of Black Soldier Fly Maggot Were Reared In
The Mixture Of Laying Hen Manure With Lemuru Fish Oil

No.	Questions	OK*	Need revision*
1.	Is the paper content original?		
2.	Does the title reflect the manuscript content clearly?		
3.	Is the abstract sufficiently informative and does it contain clear statement of introduction, objective, methods, results, and conclusion?		
4.	Does the introduction clearly describe the research scope, hypotheses, problem solving, and the expected result?	\checkmark	
5.	Is the statement of the objectives and hypotheses appropriate and does it desribe the problem investigated?		
6.	a) Is the research methodology used appropriate?		
	b) Is the decription of the materials and methods sufficiently informative to allow replication of the experiment?	\checkmark	
	c) Is the statistical method used correct and appropriate?		
7.	a) Are the data presented sufficient and do they contain a complete information?		
	b) Are the data presentation and interpretation valid and representative?		\checkmark
8.	a) Is discussion described clearly and concisely, and also supported by the data presented and other/previous research results?		
	b) Does the discussion show relevance between the results and the field of investigation and/ or hypotheses?		\checkmark
9.	Is the conclusion written clearly and concisely reflecting the experimental results obtained?		
10.	Are the references used relevant to the topic?		
11.	Is the paper written in a concise and logical manner that can be easily understood?	\checkmark	
D_{0}	se give thick (λ) mark		

*) Please give thick ($\sqrt{}$) mark.

The 1st International Conference on Sustainable Animal Resources and Environment

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

Comments (please use additional paper if more space is needed)

FATTY ACID COMPOSITION OF BLACK SOLDIER FLY MAGGOT WERE REARED IN THE MIXTURE OF LAYING HEN MANURE WITH LEMURU FISH OIL

AAM GUNAWAN¹, ABD.MALIK¹, DENI RUSMANA², MUH. SYARIF DJAYA¹,

AND NENI WIDANINGSIH¹

¹Department of Animal Husbandry, Faculty of Agriculture, Islamic University of Kalimantan Banjarmasin Jl. Adhyaksa No. 2 Kayu Tangi Banjarmasin Telp. (0511) 3303880 ²Faculty of Animal Husbandry, Padjadjaran University Bandung Jl. Raya Bandung Sumedang KM.21, Hegarmanah, Jatinangor, Kabupaten Sumedang, Jawa Barat 45363 Telepon: (022) 84288828

ABSTRACT

Maggot black soldier fly can convert a mixture of layer chicken manure with lemuru fish oil into nutrient-rich biomass. The growth and nutrient composition of maggot is strongly influenced by the type of media used as food. Therefore, it is necessary to know whether the addition of lemuru fish oil into laying hens manure as a medium for maggot growth can affect the production of fresh maggot and the nutrient content of maggot meal, especially its fat content and fatty acid composition. In this study, the maggot black soldier fly was given six kinds of feed consisting of a mixture of laying hens manure with the addition of lemuru fish oil which varied 0%, 3%, 6%, 9%, 12%, and 15%. A total of 24 bioconverters containing 2 kg of a mixture of laying hens manure with lemuru fish oil were placed 0.1 g of black soldier fly eggs in each bioconverter. Every week, 2 kg of mixed feed were added to make a total of 8 kg of manure for each bioconverter. Three weeks old maggot black soldier fly was harvested and the total production was weighed. The weight of 100 maggots was also weighed. Maggot drying is done in an oven. Samples of maggot meal in each type of mixed feed were analyzed for dry matter content, ash, crude protein, crude fiber, crude fat, calcium, phosphorus, gross energy, nitrogen free extract, and fatty acid composition. The data was then analyzed for variance (ANOVA) followed by Duncan's multiple range test. The results showed that the treatment was highly significant effect on maggot production, weight of 100 maggots, and crude fat content. Supplementation of 12% lemuru fish oil resulted in the highest maggot production with an average weight of maggot which was almost the same as the addition of 15% lemuru fish oil. The fat content of maggot meal was higher with the increase in the use of lemuru fish oil. Lemuru fish oil supplementation was able to improve the nutritional quality of maggot meal, the fatty acid content of BSF maggot meal was quite complete and contained unsaturated fatty acids. Mixed feed of laving hens manure with 12% lemuru fish oil was the best mixture with the highest average fresh BSF maggot production of 1.139.25 g, average weight of maggot 0.19 g/maggot, crude fat content 33.87%, linoleic 6.483%, linolenic acid 0.388%, EPA 2.142 %, and DHA 0.049%. It was concluded that the addition of lemuru fish oil into the manure of laying hens could enrich the unsaturated fatty acid content of maggot black soldier fly.

Key words: BSF maggot, laying hens manure, fatty acid composition

INTRODUCTION

Fish meal is a feed ingredient that is widely used as a mixture of poultry rations. The availability of fish meal is feared to decrease so that it can cause price increases. Several researchers have tried to replace fish meal with maggot meal (Newton et al., 1977; Bondari and Sheppard 1981; Akpodiete et al., 1998; Teguia et al., 2002; Awoniyi et al., 2003; Agunbiade et al., 2007; Bodri and Cole 2007; St-Hilaire et al., 2007). When compared to its nutrient content, fish meal contains higher protein and quite high essential fatty acids, while BSF maggot meal contains high crude fat but low essential fatty acid content.

The larvae of *Hermetia illucens* or better known as the maggot black soldier fly (BSF) are very well used as feed ingredients for protein sources to replace fish meal which has recently been imported. Maggot BSF contains about 42% protein with 35% fat content

Commented [A1]: italic

(Sheppard et al. 1994). The nutrient content in BSF maggots depends on the substrate used for growth, which generally uses waste, such as food waste (Ewald et al. 2020), poultry manure (Sheppard et al., 1994; Awoniyi et al., 2003), dairy cow manure (Myers et al., 2008).

Although chicken manure is suitable for reared BSF maggots, chicken manure actually lacks fat, according to Ghaly and MacDonald (2012) laying hens manure contain 6.3% fat, 42.2% crude protein, 6.5% crude fiber and 33% carbohydrates. Slightly different from that reported by Shumo et al. (2019) Chicken manure contains 2.7% fat, 15.3% crude protein, 18.3% ADF, 35.5% NDF and 86.6% organic matter. In fact, BSF maggots need a medium with a high fat content to be deposited in the body. The addition of fat or oil may help the growth of BSF larvae. Moreover, when using lemuru fish oil, it can be estimated that the BSF maggot produced will contain fat with a higher poly unsaturated fatty acid composition. But the price per kg of maggot is also higher.

Unsaturated fatty acids are needed by the human body because they can increase intelligence in children and prevent coronary heart disease in adults. Therefore, livestock products such as meat and eggs should be cultivated to contain more unsaturated fatty acids such as omega-3 and omega-6. The content of unsaturated fatty acids in meat and eggs depends on the feed ingredients used for animal feed. Likewise, the fatty acid profile of BSF maggots is highly dependent on the substrate used. Ewald et al. (2020) concluded that the fatty acid composition of BSF larvae was influenced by substrate feed and larval weight.

The amino acid profile of BSF maggot meal is similar to the amino acid profile of fish meal (Atteh and Ologbenla, 1993), but its fatty acid profile is not widely known. Ewald et al. (2020) reported that BSF larvae contain high levels of saturated fatty acids up to 76%, monounsaturated fatty acids 32% and polyunsaturated fatty acids 23%. Previous studies have shown that it is possible to modify the fatty acid composition of BSF maggots. Knowledge of this fatty acid profile is very important so that the quality of BSF maggot is relatively the same as fish meal and can be used as animal feed ingredients. Thus, the aim of this study was to investigate how chicken manure mixed with various levels of lemuru fish oil affected the fatty acid composition of BSF biomass and BSF maggot production.

MATERIAL AND METHOD

Materials

Commented [A2]: how is the magot price with media lemuru.....getting higher Commented [AG3R2]: I added a sentences. But the price per kg

of maggot is also higher

Commented [A4]: for poultry ingredient?

Commented [AG5R4]: yes for various types of livestock and fish.

The materials used in this experiment included laying hens manure, lemuru fish oil and BSF fly eggs. The tools used include 24 bioconverters, scales, dryers, and equipment for nutrient content analysis.

Research procedure

(1) Egg Collection

The collection of BSF fly eggs is carried out in closed cages, so that BSF flies come to deposit their eggs using fermented palm kernel meal. BSF fly eggs obtained were collected in a petri dish.

(2) Implementation of bioconversion

There were 24 bioconverters each filled with 2 kg of chicken manure, then lemuru fish oil was added according to treatment (0, 3, 6, 9, 12, and 15% of the weight of chicken manure). Mix until homogeneous. 0.1 g of BSF fly eggs were placed on chicken manure. After hatching, 2 kg of chicken manure and lemuru fish oil were added, then repeated in the second and third weeks.

(3) Harvesting maggot

Harvesting of BSF maggots was carried out at the age of 3 weeks. The BSF maggots that have been collected are then weighed and dried at a temperature of 50 0 C.

(4) Nutrient Content Analysis

Samples of laying hens manure and BSF maggot were analyzed proximately.

(5) Fat extraction and Fatty acid analysis

BSF maggots were mashed, then fat extraction was carried out using the Bligh and Dyer analysis (1959) method, while for fatty acid analysis using the analytical procedure of Christopher and Glass (1969) with slight modifications.

Variable Response

The independent variable in this study was the level of addition of lemuru fish oil in laying hens manure as a growth medium for BSF maggots. The dependent variables were maggot production, weight of 100 maggots, nutrient content (protein, carbohydrates, fat, crude fiber, calcium, phosphorus, fatty acids, and gross energy) and fatty acid composition.

Statistical Analysis

This research is a pure experiment using Completely Randomized Design (CRD) with six treatments and four repetitions. In detail the six treatments were: M1: lemuru fish oil (0%); M2: 3% lemuru fish oil; M3: 6% lemuru fish oil; M4: 9% lemuru fish oil; M5: lemuru fish oil 12%; and M6: 15% lemuru fish oil. To determine the effect of treatment, statistical analysis was carried out the F test, if there was a significant effect, then to determine differences in the levels of lemuru fish oil used, Duncan's multiple range test was carried out (Steel and Torrie, 1982).

RESULTS AND DISCUSSION

Maggot Production

The highest average BSF maggot production of 1,139.25 g was obtained in the treatment using 12% lemuru fish oil mixing level (M5), and the lowest was 537.0 g in the treatment without using lemuru fish oil (M1) (Table 1). The results of the analysis of variance on the resulting maggot production data showed that the treatment had a highly significant effect (P<0.01) on the fresh maggot production produced and the results of Duncan's multiple range test showed that the treatment of mixing lemuru fish oil was significantly different from the treatment without using lemuru fish oil, the use of Lemuru fish oil resulted in higher BSF maggot production, but the best mixing rate was 12%. Levels of mixing lemuru fish oil 3, 6, 9, and 15% gave relatively the same larval production.

Table 1. Average production of fresh BSF maggots (g) and weight of 100 fresh BSF maggots based on the level of treatment of mixing lemuru fish oil with laying hens manure

Treatment	Average production of larvae	Average weight of 100 fresh BSF
freatment	0 1	0 0
	$(g \pm SEM)$	larvae ($g \pm SEM$)
M1 (0%)	537.00 <u>+</u> 15.30 ^a	13.0150 ± 0.80^{a}
M2 (3%)	869.50 <u>+</u> 36.34 ^b	15.4200 ± 0.19^{ab}
M3 (6%)	871.50 <u>+</u> 44.08 ^b	14.4875 <u>+</u> 0.71 ^a
M4 (9%)	852.75 <u>+</u> 70.24 ^b	17.8400 ± 2.05^{bc}
M5 (12%)	1,139.25 <u>+</u> 90.10 ^c	18.8625 <u>+</u> 0.83 ^c
M6 (15%)	807.75 <u>+</u> 57.99 ^b	19.3275 <u>+</u> 0.79 ^c

Distinct superscript letters in the column indicate significant differences according to Duncan's test ($P \le 0.05$).

The difference in the average BSF maggot production between the mixing level of 0% and 3-12%, is due to the maggot needing oil for growth and food reserves during the pupal and adult phases, by consuming lemuru fish oil and the protein contained in laying hens manure causes the maggot produced more. According to Sheppard et al. (1994) larvae of black soldier flies contain 35% fat and 42% protein, while the results of research by Ewald et al. (2020) black soldier fly larvae reared in food waste contain 40.7% fat and 36.6% protein so it needs to be provide in the media as a place of growth.

The mixing level of 15% lemuru fish oil gives lower yields compared to the mixing rate of 3-12%, this is thought to be less favored by the larvae because the media produced from this mixture is too sticky and smells fishy, which may interfere with the movement of the larvae.

The level of BSF maggot production in the media obtained in this study was relatively high, when converted it reached 7-14%. Almost the same as that reported by Lalander et al. (2019) the maggot black soldier fly was able to convert 13.9% of food waste and 7.1% of poultry manure. This high level of BSF maggot production is thought to be caused by the manure used for BSF maggot growth media is still fresh, so that the available nutrients are sufficient to support maggot growth. According to Morgan and Eby (1975) in Tomberlin et al. (2002) larvae of other diptera species such as house flies require fresh manure every day to support optimal growth. Manure that has been in the cage for a long time may have been eaten by house fly maggots and has been digested by anaerobic organisms, resulting in less available nutrients, thereby suppressing the growth of BSF larvae. Larrain and Salas (2008) in their study used fresh manure less than 5 hours after being excreted by livestock.

Weight of 100 Maggots

The highest average weight of 100 fresh BSF maggots (Table 1) was obtained in the treatment using 15% lemuru fish oil mixing (M6) which was 19.3275 g, and the lowest was in the treatment without lemuru fish oil mixing (M1) which was 13.0150 g. The results of the analysis of variance on the weight data of 100 BSF maggots showed that the treatment had an effect on the weight of 100 fresh maggots. The higher the level of mixing of lemuru fish oil tends to produce heavier maggots. This is easy to understand because maggot really needs fat/oil to support its life development.

Duncan's test results showed that between M1, M2, and M3 did not show a significant difference, as well as between M4, M5, and M6 each produced almost the same maggot weight, so it can be said that the mixing rate of 12% is the mixing level of lemuru fish oil with optimal laying hens manure.

The M6 treatment produced the largest BSF maggot weight, but in terms of total fresh maggot production it was still below the M5 treatment, this may be due to the high mortality rate of larvae at a young age, as a result of the media being too sticky from this mixing.

The BSF maggot weight obtained from the results of this study ranged from 0.1301 g/maggot on laying hens manure media without lemuru fish oil, up to 0.1933 g/maggot on 15% lemuru fish oil mixing media. The average weight of BSF maggots obtained from the results of this study is slightly different (the resulting weight range is 0.1301-0.1933 g wider) with the results of research conducted by Tomberlin et al. (2002) who got the weight range of black soldier larvae from 0.153-0.171 g/larvae. The difference in these results is due to the difference in the media used. While Nguyen et al. (2013) obtained a larval weight of 339 mg/3 larvae or 0.113 g/larvae cultured in pig manure and Ewald et al. (2020) obtained a larval weight of 0.191 g/larvae cultured in food waste.

Nutrient Content

The average nutrient content of BSF maggot meal based on the treatments is presented in Table 2. The nutrient content between treatments was quite varied, but statistically analyzed only crude fat content, because this nutrient was closely related to the treatment given.

Nutrient			Treat	ment		
	M1	M2	M3	M4	M5	M6
Water (%)	3.60	2.34	3.49	3.41	3.46	3.95
Ash (%)	17.20	13.80	15.63	15.10	12.96	13.30
Crude protein (%)	36.82	40.66	41.63	42.46	43.17	44.26
Crude fiber (%)	2.69	2.90	2.56	2.50	2.75	2.50
Crude fat (%)	24.80	26.22	28.15	32.23	33.87	34.39
Calcium (%)	1.47	1.45	1.31	1.21	1.25	1.20
Phosphorus (%)	0.78	0.65	0.56	0.71	0.55	0.65
Gross energy						
(Kkal/kg)	4,214.75	4,595.00	5,265.75	5,409.50	5,585.00	5,931.75
nitrogen-free	18.47	16.47	12.02	7.70	7.24	3.70

Table 2 Nutrient Content of meal BSF larvae (% dry matter) based treatment

extract (%)				
	extract (%)			

The highest average crude fat content was obtained in the treatment using 15% lemuru fish oil mixing with laying hens manure (M6), which was 34.39%, and the lowest was in the treatment without using lemuru fish oil on laying hens manure medium (M1), which was 24.80 % (Table 2). The results of the analysis of variance on the crude fat content data showed that the treatment had a highly significant effect on the crude fat content of BSF maggot meal.

Table 3. Average crude fat content of BSF larvae meal (g) produced by treatment of mixing lemuru fish oil with laying hens manure

Treatment	Average crude fat content of BSF larvae meal
	(g)
M1 (0%)	24.80 <u>+</u> 0.31 ^a
M2 (3%)	26.22 ± 0.35^{b}
M3 (6%)	28.15 <u>+</u> 0.22 ^c
M4 (9%)	32.23 ± 0.14^{d}
M5 (12%)	33.87 <u>+</u> 0.23 ^e
M6 (15%)	34.39 <u>+</u> 0.62 ^e

Distinct superscript letters in the column indicate significant differences according to Duncan's test ($P \le 0.05$).

The difference in the average crude fat content of BSF maggot meal is thought to be due to differences in the size of BSF maggots. BSF maggots produced from M6 media are larger than M1 media. Larger maggots are generally able to store more fat in their bodies, so they contain higher crude fat than smaller BSF maggots.

The crude fat content of maggot BSF ranged from 24.80-34.39% (Table 3), almost the same as that reported by Shumo et al. (2019) The crude fat content of BSF maggot meal is on average 30.1% in chicken manure and 34.3% in kitchen waste. Thus, the crude fat content of BSF larvae meal is highly dependent on the media used for its growth.

Fatty Acid Profile

The fatty acid profile of BSF maggot meal based on the treatment is presented in Table 4. However, only the fatty acids that were considered essential were analyzed, namely linoleic, linolenic, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA).

Fatty acid	Treatment					
-	M1	M2	M3	M4	M5	M6
Miristic	6.202	6.347	7.376	7.642	7.929	7.081
Palmitic	11.230	14.163	19.675	19.545	20.673	17.436
Palmitoleic	5.580	7.808	6.869	5.904	6.067	4.749
Stearic	1.417	1.400	2.024	2.457	2.116	2.104
Oleic	16.781	17.989	19.500	18.283	17.806	14.225
Linoleic	5.765	5.562	6.649	7.068	6.483	6.682
Linolenic	0.244	0.378	0.396	0.507	0.388	0.586
EPA	0	0	2.110	1.904	2.142	1.784
DHA	0	0	0.168	0.092	0.049	0

Table 4 fatty acid profile (%) of BSF larvae meal based treatment

Commented [A6]: Lauric??

Commented [AG7R6]: Lauric is fatty acid of short chain, not detected because especially long chain fatty acid, it is needed for healty.

Keterangan: EPA = eicosapentaenoic acid (20:5n-3)

DHA = docosahexaenoic acid (22:6n-3)

 Table 5.
 Average fatty acid content of meal BSF larvae (%) produced by treatment of mixing lemuru fish oil with laying hens manure

Fatty acid	Treatment					
	M1	M2	M3	M4	M5	M6
Linoleic	5.765 <u>+</u> 0.09 ^{ac}	5.562 <u>+</u> 0.24 ^c	6.649 ± 0.45^{ab}	7.068 ± 0.02^{b}	6.483 <u>+</u> 0.46 ^{ab}	6.682 ± 0.22^{ab}
Linolenic	0.244 ± 0.03	0.378 ± 0.04	0.396 ± 0.07	0.507 ± 0.11	0.388 ± 0.12	0.586 ± 0.05
EPA	$0 + 0.00^{a}$	$0 + 0.00^{a}$	$2.110 \pm 0.12^{\circ}$	1.904 ± 0.07^{bc}	2.142 + 0.09°	1.784 ± 0.11^{b}
DHA	$0 + 0.00^{a}$	$0 + 0.00^{a}$	0.1685 ± 0.01^{b}	0.092 ± 0.05^{ab}	0.049 ± 0.05^{a}	$0 + 0.00^{a}$
Distinct, superscript letters in the column indicate significant differences according to Duncan's test ($\mathbf{P} \leq$						

Distinct superscript letters in the column indicate significant differences according to Duncan's test (P \leq 0.05).

Linoleic, Linolenic Fatty Acids, EPA and DHA

Linoleic and linolenic fatty acids were found in all types of media, while eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were found in media containing lemuru fish oil. Ewald et al. (2020) stated that there are great similarities between the fatty acid composition of larvae and substrates. Linoleic fatty acid content in this study ranged from 5.562-7.068% (Table 5), the percentage is less than the results of Barroso et al. (2017) and Liland et al. (2017), linoleic acid (C18:2) was found in high percentages of 12-24% in larvae fed fish and chicken feed, or wheat and brown algae. And almost the same as the research of Ewald et al. (2020) of 2.6-12.5% in larvae fed bread, leftovers, fish and shellfish.

The results of analysis of variance showed that the treatment level of mixing lemuru fish oil with laying hens manure had a highly significant effect (P<0.01) on the linoleic fatty acid, EPA and DHA content of BSF maggot meal, but had no significant effect on the linolenic fatty acid content. This effect is the result of the addition of lemuru fish oil. The

results of the Agricultural Technology laboratory analysis at Gadjah Mada University Yogyakarta showed that lemuru fish oil contained linoleic, linolenic, EPA and DHA fatty acids, respectively 10.564%, 1.021%, 5.106%, and 2.966%. The addition of lemuru fish oil in laying hens manure was actually utilized by larvae and stored in the form of body fat, so that BSF maggots contained more linoleic, linolenic, EPA, and DHA fatty acids than without the addition of lemuru fish oil in laying hens manure media.

The content of linolenic fatty acid between treatments had no significant effect, this was due to the small amount of linolenic fatty acid in lemuru fish oil, namely 1.021%, so that a small amount of BSF maggot could be stockpiled. The fatty acid content of EPA and DHA began to be seen in the M3 treatment, and until the M5 treatment the EPA content was not significantly different. The DHA content was very high in the M3 treatment, but was not detected in the M6 treatment. DHA was not detected in the addition of 15% lemuru fish oil, it is possible that the larvae are no longer eating and store a lot of energy in the form of saturated fatty acids, according to the opinion of Ewald et al. (2020) more energy is stored in the form of unsaturated fatty acids because these fatty acids are less susceptible to oxidation than unsaturated fatty acids. Furthermore, it is said that when the larvae gain weight, the percentage of EPA and DHA decreases. Meanwhile Liu et al. (2017) found a decrease in unsaturated fatty acids over time as the black soldier fly larva (BSFL) got older. EPA and DHA were not found in the M1 and M2 treatments. This is easy to understand because the substrate contains little or no EPA and DHA according to the opinion of Liland et al. (2017) EPA (C20:5) and DHA (C22:6) were found in the larvae, most likely from the substrate.

CONCLUSIONS AND SUGGESTIONS

Conclusion

Lemuru fish oil is very well used for mixed BSF maggot growth media. The best mixture of lemuru fish oil is 12% of the weight of asfed laying hens manure, because it produces the most BSF maggot production with a fairly high average maggot weight and contains linoleic, linolenic, EPA and DHA fatty acids which are needed for Alabio duck feed supplements.

Suggestion

Commented [A8]: How the feed cost/feed price? Commented [AG9R8]: The price of maggot certainly increasing. In this research it has not been calculated. For optimal maggot growth, it is necessary to pay attention to the fat and protein content of the media used. If the laying hens manure used contains low fat, it is better to add lemuru fish oil 12% of the weight of the laying hens manure. Laying hens manure used should be fresh manure so that the nutrients contained in it can be immediately consumed by BSF maggots, without being overhauled by microorganisms.

REFERENCES

- Agunbiade, J.A., O.A. Adeyemi, O.M. Ashiru, H.A. Awojobi, A.A. Taiwo, D.B. Oke, and A.A. Adekunmisi. 2007. Replacement of Fish Meal with Maggot Meal in Cassavabased Layers Diets. J. Poult. Sci. 44:278-282.
- Akpodiete, OJ., AD Ologhobo and AA Onifade. 1998. Maggot meal as a substitute for fish meal in laying chicken diet. *Ghana Jnl agric. Sci.* 31(2): 137-142
- Atteh, J.O. and S. Ologbenla. 1993. Replacement of Fish Meal with Maggots in Broilers' Diet. Nigerian Journal of Animal Production. 20:44-49.
- Awoniyi, T.A.M., V.A. Aletor and J.M. Aina. 2003. Performance of Broiler- Chickens Feed on Maggot Meal in Place of Fish Meal. *International Journal of Poultry Science* 2(4):271-274.
- Bligh, E. G. and W. J. Dyer. 1959. "A rapid method of total lipid extraction and purification," *Canadian Journal of Biochemistry and Physiology*, vol. 37, no. 8, pp. 911–917.
- Bodri, M.S. and E.R. Cole. 2007. Black Soldier Fly (*Hermetia illucens* Linnaeus) as Feed for the American Alligator (*Alligator mississippiensis* Daudin). *Georgia Journal of Science* 65(2): 82–88.
- Bondari, K. and D.C. Sheppard. 1981. Soldier Fly Larvae as Feed in Commercial Fish Production. *Aquaculture* 24: 103–109.
- Barroso, F.G., Sanchez-Muros, M.-J., Segura, M., Morote, E., Torres, A., Ramos, R., Guil, J.-L., 2017. Insects as food: Enrichment of larvae of *Hermetia illucens* with omega 3 fatty acids by means of dietary modifications. J. Food Compos. Anal. 62:8-13.
- Christopherson, S.W. and R.L. Glass. 1969. Preparation of Milk Fat Methyl Ester by Alcoholysis in an Essentially Nonalcoholoc Solution. Journal of Dairy Science.52(8)1289-1290.
- Ewald, N., A. Vidakovic, M. Langeland, Anders Kiessling, S. Sampels, and C. Lalander. 2020. Fatty acid composition of black soldier fly larvae (Hermetia illucens)-Possibilities and limitations for modification through diet. Waste management. 102: 40–47.

Commented [A10]: How about C/N ratio? Commented [AG11R10]: C/N ratio has not yet been measured

Commented [A12]: italic

- Ghaly, A.E. and K.N. MacDonald. 2012. Drying of Poultry Manure for Use as Animal Feed. American Journal of Agricultural and Biological Sciences 7(3):239-254.
- Lalander, C., S. Diener, C. Zurbrügg, B. Vinnerås. 2019. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). Journal of Cleaner Production. 208:211-219.
- Larrain, P.S and Salas, C.F. 2008. House Fly (*Musca domestica L.*) (Diptera: Muscidae) Development in Different Types of Manure. Chilean Journal of Agricultural Research. 68:192-197.
- Liland, N.S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C.G., Waagbo, R., Torstensen, B.E., Lock, E.-J., 2017. Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLoS ONE 12. e0183188.
- Liu, X., Chen, X., Wang, H., Yang, Q.Q., Rehman, K.U., Li, W., Cai, M.M., Li, Q., Mazza, L., Zhang, J.B., Yu, Z.N., Zheng, L.Y., 2017. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE 12, 21.
- Myers, H.M., Tomberlin, J.K., Lambert, B.D., and Kattes, D. 2008. Development of Black Soldier Fly (Diptera: Stratiomyidae) Larvae Fed Dairy Manure. *Environ. Entomol.* 37(1):11-15.
- Newton, G.L., C.V. Booram, R.W. Barker and O.M. Hale. 1977. Dried *Hermetia illucens* Larvae Meal as A Supplement for Swine. *Journal of Animal Science* 44(3):395–400.
- Nguyen, T. T. X., Jeffery K. T, and Sherah, V. 2013. Influence of Resources on *Hermetia illucens* (Diptera: Stratiomyidae) Larval Development. J. Med. Entomol. 50(4): 898-906. DOI: http://dx.doi.org/10.1603/ME12260.
- Sheppard, D.C., G.L. Newton, S.A. Thompson and S. Savage. 1994. A Value Added Manure Management System Using The Black Soldier Fly. *Bioresource Technology* 50:275-279.
- Shumo, M., I.M. Osuga, F.M. Khamis, C.M.Tanga, K.K.M. Fiaboe, S.Subramanian, S.Ekesi, A.van Huis, and C.Borgemeister. 2019. The nutritive value of black soldier fy larvae reared on common organic waste streams in Kenya. Scientific reports. 9:10110.
- Steel, R.G.D. and J.H. Torrie. 1982. Principle and Procedure of Statistics: A Biometrical Approach. Second Edition. Mc. Graw hill International Book Co. Tokyo.
- ST-Hilaire, S., C. Sheppard, J.K. Tomberlin, S. Irving, L. Newton, M.A. McGuire, E.E. Mosley, R.W. Hardy and W. Sealey. 2007. Fly Prepupa as a Feedstuff for Rainbow Trout, Oncorhynchus mykiss. *Journal of the World Aquaculture Society* 38(1):59-67.

- Teguia, A., M. Mpoame and J.A. Okourou Mba. 2002. The Production Performance of Broiler Birds as Affected by the Replacement of Fish Meal by Maggot Meal in the Starter and Finisher Diets. *Tropicultura*. 20(4):187-192.
- Tomberlin, J.K., D.C. Sheppard, and J.A. Joyce. 2002. Selected Life-History Traits of Black Soldier flies (Diptera: Stratiomyidae) Reared on Three Artificial Diets. *Ann. Entomol.Soc. Am.* 95(3):379-386.

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

SEMINAR PROGRAM FIRST DAY

Wednesday, November 10, 2021

https://ipb.link/icareday1

Meeting ID: 971 8864 4353; Passcode: 350596

Time	Event
08.00-08.30	Registration
08.30-08.40	Report from OC
08.40-08.55	Welcome Address from Dean Faculty of Animal Science
08.55-09.15	Opening speech from Rector of IPB University
09.15-09.25	Photo session
09.25-09.30	Traditional performance
	Keynote Session
	Moderator : Prof. Dr. Ir. Muladno, MSA
09.30-09.50	Keynote speaker 1: Ministry of Agriculture
09.50-10.10	Keynote speaker 2: Head of National Research and Innovation
	Agency
10.10-10.30	Keynote speaker 3: Vice Governor West Sumatra
10.30-11.00	Discussion
11.00-11.20	Keynote Speakers and moderator appreciation
11.20-12.00	Seminar Program Information by OC
12.00-13.00	Break
	Plenary Session I
	Moderator : Prof. Dr. Ir. Asnath M Fuah, MS
13.00 -13.20	Invited speaker 1 : Prof. Graham Gardner (Australia)
13.25-13.45	Invited speaker 2 : Prof. Masahiro Ogawa (Japan)
13.50-14.10	Invited speaker 3 : Prof. Jo Cheorun (South Korea)
14.15-14.35	Invited speaker 4: Prof. Yusuf Konca (Turkey)
14.35-15.05	Discussion
15.05-15.15	Invited Speakers and moderator appreciation
15.15-15.30	Break
	Parallel Session
15.30-17.00	Parallel Session 1
	Animal Product's Technology
	Animal Feed and Nutrition
	Animal Breeding, Genetic and Environment

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

SEMINAR PROGRAM SECOND DAY

Thursday, November 11, 2021

https://ipb.link/icareday2 Meeting ID: 925 7029 7064; Passcode: 946474

Time	Event
08.30-09.00	Registration
09.00-11.30	Parallel Session 2
	Animal Product's Technology
	Animal Nutrition, Forage and Feed Technology
	Animal Nutrition, Forage and Feed Technology
	Animal Management, Production, Logistic and Welfare
	Animal Breeding, Genetic and Environment
12.00-13.00	Break
	Plenary Session II
	Moderator : Prof. Dr.sc.ETH Anuraga Jayanegara, M.Sc
13.00-13.20	Invited speaker 5: Prof. Cece Sumantri (Indonesia)
13.25-13.45	Invited speaker 6: Assoc. Prof. Longyu Zheng (China)
13.50-14.10	Invited speaker 7: Assoc. Prof. Hasliza Hassim (Malaysia)
14.10-14.40	Discussion
14.40-14.50	Invited Speakers and moderator appreciation
14.50-15.00	Sponsor Video/performance
	Plenary Session III
	Moderator : Prof. Dr. Ir. Nahrowi, M.Sc
15.00-15.20	Invited speaker 8: Prof. Luki Abdullah (Indonesia)
15.25-15.45	Invited speaker 9: Prof. Steffen Weigend (Germany)
15.50-16.10	Invited speaker 10: Marion De Vries, Ph.D (Netherland)
16.10-16.40	Discussion
16.40-16.50	Invited Speakers and moderator appreciation
	Closing ceremony
16.50-17.05	Awarding
17.05-17.15	OC report

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

PARALEL SESSION

DAY 1

Wednesday, November 10, 2021 https://ipb.link/icareday1 Meeting ID: 971 8864 4353; Passcode: 350596

,	nimal Product's Technology)		
Moderator :	Dr. Cahyo Budiman SPt., MSc		
	Veronica Wanniatie, Arif Qisthon, Ali Husni, Dedy Yuliawan, Panca		
15.30-15.40	Apriky, Yufi Diana Safitri Arlintia Widiawati, Mauly Aulia Putri Borneo		
	"Physicochemical And Microbiological Quality Of Goat's Milk Yogurt With		
	The Added Of Red Ginger (Zingiber officinale Var. Rubrum) Extract"		
	M Fiqri Erzhad, Marwah Hasan, Zakiah Wulandari, M.Sriduresta Soenarno,		
15.40-15.50	M.Arifin, Devi Murtini, Irma Isnafia Arief		
	Physicochemical properties, total lactic acid bacteria and panelists preference		
	for goat's milk kefir with fortification of red fruit liquid extract		
15.50-16.00	Andrean Wangsa, Haryadi Raharjo		
	A Narrative Review on Technological and Nutritional Aspects of Milk		
	Phospholipids		
	Dyah Nurul Afiyah, Riska Nurtantyo Sarbini, Irma Isnafia Arief, Tuti		
16.00-16.10	Suryati		
	β-Carotene Content and Quality Properties of Probiotic Yoghurt		
	Supplemented with Podang Urang Mango Extract		
	Rifa Rafi'atu Sya'bani Wihansah, Debby Fadhilah, Pazra Wahyuningsih,		
16.10-16.20	Kusuma Sri Handayani		
	Assesment of the Antidiabetic Activity and Quality Attributes of Yogurt		
	Enhanced with Herbs Extracts		
16.20-16.45	Discussion		

Faculty of Animal Science, IPB University JI. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

PARALEL SESSION

DAY 1

Wednesday, November 10, 2021

https://ipb.link/icareday1

Meeting ID: 971 8864 4353; Passcode: 350596

ROOM B (An	imal Nutrition, Forage and Feed Technology)		
Moderator : D	Dr. Dilla M. Maeisthia Fassah SPt, MSi, Student 2		
	Rani Winardi Wulan Sari, Novirman Jamarun, Suyitman, Khasrad, Gusri		
15.30-15.40	Yanti, Zaitul Ikhlas		
	Nutritional Analysis of Mangrove Leaves (Rhizophora apiculata) Soaking with		
	Lime Water for Ruminants Feed		
15.40-15.50	Modawy Abdelgader, Ismoyowati, Eka Aris Rimbawanto		
	Supplementing Diet with Safflower Oil (Carthamus Tinctorius. L) and Inositol		
	for Male Sentul Chicken of Performance, Blood Hematological, Immunity and		
	Organs Lymphoid		
	Isnaini Dafri, Salsa Bela Nur Izah, M. Firman Abdullah, Nahrowi, Anuraga		
15.50-16.00	Jayanegara		
	High, Moderate, and Low Protein Feed Preparation Technology and Its		
	Feeding Strategy to Increase Maggot Productivity		
	Syafwan, Yatno, Agus Budiansyah, Kristoper Simanungkalit, Lusia		
16.00-16.10	Agustina BR Sembiring, Intan Lestari BR Aritonang		
	Effect of Different Calcium Sources Given Free Choice on Calcium		
	Consumption and Egg Production of Arabic Chickens in the Early Laying		
	Period.		
16.10-16.20	Listya Purnamasari, Hari Purnomo		
	Detection of biological and aflatoxin B1 contaminats in broiler feed at the		
	poultry shop Sumbersari District, Jember		
16.20-16.45	Discussion		

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

PARALEL SESSION DAY 1

Wednesday, November 10, 2021

https://ipb.link/icareday1

Meeting ID: 971 8864 4353; Passcode: 350596

nimal Breeding and Genetic and Environment)
Dr. M Sriduresta SPt., MSi
Titis Apdini, Windi Al Zahra, Simon J. Oosting, Corina van E. Middelaar
Coupling livestock to land: a scenario study for smallholder dairy farms in
Indonesia
Windi Alzahra, Ahmad Ari Aldino, Titis Apdini
Understanding the relationship between milk production and greenhouse gas
emissions intensity at smallholder dairy farms
Muhammad Bagas Tama, Ardian Maulana, Septiana Widayanti, Rebecca
Vanessa, Galih Pambuko, Rahyu Eka Puji Lestari, Novita Herowati, Taufiq
Gunawan
The Association of Lactoferrin (LTF) Gene with Milk Production Traits in
Indonesian Friesian Holstein Dairy Cattle
Windi Al Zahra, Mohammad Ikhsan Shiddieqy, Simon J Oosting
Comparing N2O Emissions of Different Organic Fertilisers and N Application
Rates on the Elephant Grass
Mariyam Al Haddar, Jakaria, Ronny Rachman Noor
SNP g.1117G>A HSP70 Gene Polymorphism in Domestic Beef Cattle using
PCR-RFLP Method
Discussion

Faculty of Animal Science, IPB University JI. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

PARALEL SESSION

DAY 2

Thursday, November 11, 2021

https://ipb.link/icareday2

ROOM & (A)	nimal Product's Technology)
	Dr. Epi Taufik SPt., MVPH, MSi, Student 1
09.00-09.10	Zakiah Wulandari, Iman Rahayu Hidayati, Risha Andriani
	Egg Quality And Chemical Components Of Arabic And Commercial Chicken
	Enriched With Omega 3 During Storage
00 10 00 00	Azmi Mangalisu, Irma Isnafia Arief, Andi Kurnia Armayanti, Zakiah
09.10-09.20	Wulandari
	Antimicrobic Activity Of Fermented Chicken Eggs Incubated On The Different
	Temperature And Time
	Anis Usfah Prastujati, Mustofa Hilmi, Asmaul Khusnam Irma Isnafia Arief,
09.20-09.30	Sukron
	Isolation And Identification Of Lactic Acid Bacteria Of Bekamal (Banyuwangi
-	Traditional Fermented Meat)
	Mochammad Sriduresta Soenarno, Cece Sumantri, Irma Isnafia Arief, Lilis
09.30-09.40	Nuraida
	The Effectiveness Of Plantaricin Iia-1a5 Powder Application To Extend The
	Storage Of Fresh Cow's Milk
09.40-10.00	Discussion
10.00-10.10	Dedes Amertaningtyas, Herly Evanuarini, Mulia Winirsya Apriliyani
	Chemical Quality and Amino Acid Profile of Liver Nuggets Using Different
	Flours
10.10-10.20	Nujjiya Faza Nur Azizah, Herly Evanuarini
	Physicochemical Characteristics Egg White Powder Using Lactobacillus
	bulgaricus
10.20-10.30	Yuliana Mega Leony Simbolon, Herly Evanuarini
	The Physicochemical Characteristics Of Pasteurized Liquid Whole Egg With
	Different Percentages Of Acetic Acid
	Cahyo Budiman, Muhammad Silmi Kaafah, Muhammad Rizkiawan
10.30-10.40	Pratama, Mochamad Sriduresta Soenarno, Rukmiasih, Irma Isnafia Arief
	Characterization of protease producing bacteria Isolated from Broiler Litter
	Waste
10.40-11.00	Discussion

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

PARALEL SESSION DAY 2

Thursday, November 11, 2021

https://ipb.link/icareday2

ROOM B (Ar	nimal Nutrition, Forage and Feed Technology)		
Moderator :	Prof.Dr.Ir. Asep Sudarman, MSc, Student 2		
	Megat Muhammad Nadzrin Bin Norizan, Hasliza Abu Hassim, Lokman		
09.00-09.10	Hakim Idris, Ismail-Fitry Mohammad Rashedi		
	The Effect Of Different Soy Waste Level As Protein Supplementation In Goat		
	Diets To The Carcass Characteristics, Nutritional Composition And Meat		
	Quality Of Boer Goats		
09.10-09.20	Andi Yekti Widodo, Sumiati, Ronald Tarigan		
	Level Of Avian Pathogenic Eschericia Coli (Apec), Clostridium Perfringens,		
	And Lactic Acid Bacteria In Commercial Broilers With Agp Replacers In		
	Indonesia		
09.20-09.30	Annisa Rosmalia, Nurul Asmaa Dewi, Idat Galih Permana, Despal		
	Reformulation of Dairy Cattle Concentrate Based on Rumen Degradable		
	Protein to Undegradable Protein Ratio at Different Energy Levels: In Vitro		
	Study		
09.30-09.40	Nanik Setiyaningsih, Sumiati, Anuraga Jayanegara, Wira Wisnu Wardani		
	The Effect of 25OHD3 in Combination with Vitamin C (HyC) on Hatchability		
	of Broiler Breeders		
09.40-09.50	Aeni Nurlatifah, L Khotijah, R I Arifiantini, M S Maidin, D A Astuti		
	Change in Hematology Prepartum and Postpartum of Ewe fed Flushing Diet		
	Contain Lemuru Oil		
09.50-10.15	Discussion		
	Ahmad Fariz Bin Nicholas, Hasliza Abu Hassim, Zunita Zakaria, Mohd		
10.15-10.25	Termizi Yusuf, Nazri Nayan		
	The Filamentous Fungi Selection For Pre-Treatment Of Oil Palm Frond As		
	Animal Feed		
10.25-10.35	Idat Galih Permana, Despal, A Rosmalia, M D Rahayu		
	In Vitro Evaluation of Dairy Ration Based on Rumen Degradable Protein and		
	Undegradable Protein Ratio with Leucaena Addition		
	Agustin Nazillatun Nikmah, Nahrowi, I Komang Gede Wiryawan, Anuraga		
10.35-10.45	Jayanegara		
	Optimization of Isoamylase Addition in Cassava Root Meal as an Alternative		
	of Corn		

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

10.45-10.55	Azib Ernawati, Luki Abdullah, Idat Galih Permana		
	Ruminal Macro Mineral Solubility of Indigofera zollingeriana Top-Leaves		
	from Plants with Different Density Using In Vitro Technique		
10.55-11.15	Discussion		

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

PARALEL SESSION DAY 2

Thursday, November 11, 2021

https://ipb.link/icareday2

ROOM C (Ai	nimal Nutrition, Forage and Feed Technology)		
	Dr. Wulansih Astuti SPt., MSi		
09.00-09.10	Fajrin Sidiq, Amir E Ghane, Muhammad Ridla, Widya Hermana		
	Supplementation of phytase and its combination with xylanase, amylase and		
	protease (XAP) on performance andb one mineralization of broiler chicken		
	Djoni Prawira Rahardja, Muhammad Yusuf, V.SriLestari, Kusumandari		
09.10-09.20	Indah Prahesti		
	Efficacy of In ovo Glutamine and Glucose, and Neonatal Nutrition of Mixed		
	PreProbiotic and Lysine on Hatching, Post-hatching Performance and Intestine		
	Histo-morphometry of Local Chicken		
	Dilla Mareistia Fassah, Nanda Nadhifa Nuraini, Lilis Khotijah, Kokom		
	Komalasari, Sri Suharti, Dewi Apri Astuti, Komang Gede Wiryawan, Asep		
09.20-09.30	Sudarman, Didid Diapari		
	Utilization of Vinasse-Molasses in the Finishing Ration on Growth		
	Performance of Peranakan Ongole Cattle		
09.30-09.40	Aulia Nurul Saputri, Dewi Apri Astuti, Dilla Mareistia Fassah		
	Nutrient Digestibility of Late Pregnancy Local Ewes Fed		
	Flushing Ration with Different Frequency (Kecernaan Nutrien Domba Fase		
	Akhir Kebuntingan yang Diberi Ransum Flushing dengan Frekuensi		
	Pemberian yang Berbeda)		
09.40-10.00	Discussion		
	Nur Rochmah Kumalasari, Erlangga Satria Mulyadi Putra, Asep Tata		
10.00-10.10	Permana		
	Correlation Analysis of Environment Factors on Kudzu (Pueraria javanica)		
	Growth and Productivity.		
10.10-10.20	Ariyani Tanti, Yuli Retnani, Iman Rahayu H S		
	Effect of Supplementation Garlic (Allium sativum) by Various Processing on		
	Performances of Broiler		
	Aam Gunawan, Abd. Malik, Deni Rusmana, Muh. Syarif Djaya, Neni		
10.20-10.30	Widaningsih		
	Fatty Acid Composition Of Black Soldier Fly Maggot Were Reared In The		
	Mixture Of Laying Hen Manure With Lemuru Fish Oil		

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

	Rachmat Somanjaya, Oki Imanudin, Saleh Maulana Turohman, Asnath
10.30-10.40	Maria Fuah,Sri Rahayu, Luki Abdullah, Mohamad Agus Setiadi
	In vitro Gas Production of Sorghum-Indigofera Forage-Based Complete Feed
	for Ruminants
10.40-10.50	Rita Mutia, Laily Rinda Ardani, Widya Hermana
	Evaluation of Probiotics as an Alternative a Substitute for Antibiotic Growth
	Promoters (AGP) on Carcass Percentage and Physical Quality of Broiler Meat
10.50-11.15	Discussion

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

PARALEL SESSION DAY 2

Thursday, November 11, 2021

https://ipb.link/icareday2

ROOM D (A	nimal Management, Production, Logistic and Welfare)
Moderator :	Dr. Rudi Afnan SPt., MSc
09.00-09.10	Himmatul Khasanah G Syaikhullah, M Adhyatma
	Comparative Study of Amino Acid and Fatty Acid Profile between Sapudi and
	Cross Merino Sheep Meat
09.10-09.20	Harini Nurcahya, MIA Faisal, Sri Darwati
	Morfometric of Merawangarab Chicken with Different Genetic Composition at
	2 to 12 Weeks Age Growth Phase
09.20-09.30	Harry Dhika, Agus Buono, Shelvie Nidya Neyman, Dewi Apri Astuti
	Entropy Implementation of Ongole Cattle Transportation Data
09.30-09.40	Zasmeli Suhaemi, Febriani, Sabrina, N Yessirita
	Production Potential of the First Generation of Pitalah and Bayang Ducks
	After Selection As a Community Economic Resource in West Sumatra
09.40-10.00	Discussion
10.00-10.10	Mohammad Ikhsan Shiddieqy, Priyono
	Sheep Production Management System to Harness Genetic Resources: A case
	in Bangun Karso Farm, Bogor, Indonesia
10.10-10.20	Hearty Salatny, Asnath M Fuah, Cece Sumantri, Sih Kahono, Widiatmaka
	Perception and Economic Prospect of Stingless Bee (Hymenoptera: Apidae:
	Meliponini) Development in West Halmahera
	Edit Lesa Aditia, Rudy Priyanto, Luki Abdullah, Panca Dewi MHKS,
10.20-10.30	Wasmen Manalu
	Performance Of Local Beef Cattle During Short Fattening Period After Short
	Distance Transportation With Sorinfer Feed
10.30-10.40	K Komarudin, T Sartika, N Pratiwi, N Azizah, S Sopiyana
	Laying Performance of 6th Generation Selected Gaok Chicken
10.40-11.00	Discussion

Faculty of Animal Science, IPB University JI. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

PARALEL SESSION DAY 2

Thursday, November 11, 2021

https://ipb.link/icareday2

ROOM E (Animal Breeding, Genetic and Environment)	
Moderator : Dr. Isyana Khaerunisa SPt., MSi	
	Aulia Evi Susanti, Rudy Priyanto, Muladno, Dewi Apri Astuti, Lucia Cyrilla
09.00-09.10	Eko Nugrohowati Supriyadi Dekrityana
	Potential and Productivity of Natural Forage in Oil Palm Plantations in Musi
	Banyuasin Regency, South Sumatra Province
	Jajam Haerul Jaman, Agus Buono, Dewi Apri Astuti, Sony Hartono Wijaya,
09.10-09.20	Burhanuddin
	Classification Of Large Ruminant Cattle Carrier Drivers With Naïve Bayes
	Algorithm
09.20-09.30	Adefia Fahira, Ronny Rachman Noor, Jakaria
	PLAG1 Gene Polymorphism of SNP c.795A>G in Bali, PO, and Madura Cattle
	Breeds Using PCR-RFLP Technique
	Asep Gunawan, Kasita Listyarini, Ratna Sholatia Harahap, Katrin Roosita,
09.30-09.40	Cece Sumantri
	Identification of TP53INP1 Gene and Its Association with Mineral Content in
	Sheep
09.40-10.00	Discussion
10.00-10.10	Ananda Putri, Nahrowi, Luki Abdullah
	Potential Availability of Forage in Oil Palm Plantations in West Pasaman
	Regency
10.10-10.20	Rohmad Setiaji, Muhammad Rohadi, Nuzul Widyas, Sigit Prastowo
	The influence of non-genetic factors on Bali Cattle (Bos javanicus) growth
	traits
10.20-10.30	Retno Widyani, Mus Nilamcaya
	The Benefits Of Indonesian Spices For Livestock Health As A Legacy Of Our
	Ancestors' Local Wisdom
10.30-10.40	Burhanuddin Masy'ud, Lin Nuriah Ginoga, Mariana Takandjandji, Sutopo
	The effectiveness of aphrodisiac plants to stimulate sexual behavior of Timor
	deer in captivity: A case study of sanrego, pasak bumi, and tabat barito
10.40-11.00	Discussion

Faculty of Animal Science, IPB University Jl. Agatis, Kampus IPB Darmaga Bogor, 16680 Phone.0251-8622841, Facs.0251-8622842, Email : <u>icare@apps.ipb.ac.id</u>; Web:www.icare.ipb.ac.id

International Conference

on Systainable Animal Resource and Environment

Contribution of Animal Sciences toward Sustainable Development Goals

> B O G O R November 10-11, 2021