Fitria Rizkiana, M.Pd Yasmine Khairunnisa, S.Pd., M.A Emilda Prasiska, M.Pd Rr Ariessanty Alicia K W., M.Si Antoni Pardede, Ph.D

BUKU AJAR

TERMOKIMIA 6

BUKU AJAR TERMOKIMIA TERINTEGRASI KEARIFAN LOKAL DAN NILAI **RELIGIUS**

Penulis:

Fitria Rizkiana, M.Pd

Yasmine Khairunnisa, S.Pd., M.A

Emilda Prasiska, M.Pd

Rr Ariessanty Alicia K W., M.Si

Antoni Pardede, Ph.D

Editor:

Rasidah, S.Pd., M.Sc

Desain Sampul dan Tata Letak:

M.Fikri Ansari, S.Kom

Penerbit:

Universitas Islam Kalimantan Muhammad Arsyad Al Banjari Banjarmasin

Redaksi:

Gedung A UPT Publikasi dan Pengelolaan Jurnal Universitas Islam Kalimantan Muhammad

Arsyad Al-Banjary

Jl. Adhyaksa No. 2 Kayutangi Banjarmasin, Kalimantan Selatan

Telepon (faks): 0511 - 3304352

Cetakan pertama: Oktober 2023

ISBN: 978-623-8189-10-6

ISBN 978-623-8189-10-6

Hak Cipta dilingdungi undang-undang

Dilarang memperbanyak karya tulis ini dalam bentuk dan dengan cara apapun tanpa izin tertulis dari Penerbit. Isi diluar tanggung jawab penerbit.

KATA PENGANTAR

Assalamualaikum Warahmatullahi Wabarakatuh

Alhamdulillah, segala puji selalu Kami panjatkan kepada Allah SWT atas ridho-

Nya sehingga tim penulis mampu menyelesaikan buku termokimia terintegrasi

kearifan local tanaman purun dan nilai religius tanpa kendala berarti.

Buku ajar termokimia ini diintegrasikan dengan unsur kearifan lokal Kalimantan

Selatan, yaitu tanaman purun, serta nilai religius sesuai dengan kompetensi yang

ingin dicapai.

Ucapan terima kasih tim penulis sampaikan kepada semua pihak yang mendukung

dan memberikan doa terbaik dalam penulisan buku ini. Keberhasilan buku ini tentu

tidak akan terwujud tanpa adanya dukungan dan bantuan dari mereka.

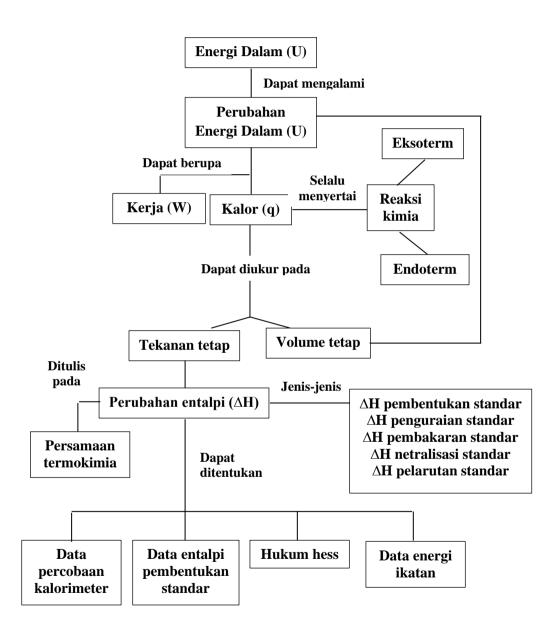
Dalam penggunaannya nanti, pembaca mungkin akan menemukan beberapa

kekeliruan dan kekurangan di dalamnya. Tim penulis memohon pemakluman dan

maaf sebesar-besarnya. Kami, Tim penulis selalu siap menerima kritik dan saran

untuk memperbaiki penulisan di masa depan

Banjarmasin, Oktober 2023


Tim Penulis

DAFTAR ISI

KA	ATA PENGANTAR	ii
DA	AFTAR ISI	iv
PE	TA KONSEP	vi
PE	NDAHULUAN	1
KF	EGIATAN PEMBELAJARAN 1	4
A.	Tujuan Pembelajaran	5
B.	Uraian Materi	6
C.	Aktivitas Pembelajaran	18
D.	Latihan Soal	23
E.	Kunci Jawaban	26
F.	Penilaian Diri	27
G.	Rubrik Penilaian Diri	29
KF	EGIATAN PEMBELAJARAN 2	34
A.	Tujuan Pembelajaran	35
B.	Uraian Materi	36
C.	Aktivitas Pembelajaran	50
D.	Latihan Soal	55
E.	Kunci Jawaban	59
F.	Penilaian Diri	60
G.	Rubrik Penilaian Diri	62
KF	EGIATAN PEMBELAJARAN 3	65
A.	Tujuan Pembelajaran	66
B.	Uraian Materi	67
C.	Aktivitas Pembelajaran	78
D.	Latihan Soal	82
E.	Kunci Jawaban	86
F.	Penilaian Diri	87

G. Rubrik Penilaian Diri	90
EVALUASI	92
GLOSARIUM	98
RANGKUMAN	100
DAFTAR PUSTAKA	103

PETA KONSEP

PENDAHULUAN

A. Identitas Modul

Mata Pelajaran : Kimia

Kelas/Semester : XI/Ganjil

Materi : Termokimia

Alokasi Waktu : 8 JP

B. Kompetensi Dasar

- 1.1 Menyadari adanya keteraturan dan kebesaran Tuhan YME dan pengetahuan tentang adanya keteraturan tersebut sebagai hasil pemikiran kreatif manusia yang kebenarannya bersifat tentatif.
- 1.2 Mensyukuri kekayaan alam Indonesia berupa minyak bumi, batubara dan gas alam serta berbagai bahan tambang lainnya sebagai anugrah Tuhan YME dan dapat dipergunakan untuk kemakmuran rakyat Indonesia.
- 2.1 Menunjukkan perilaku ilmiah (memiliki rasa ingin tahu, disiplin, jujur, objektif, terbuka, mampu membedakan fakta dan opini, ulet, teliti, bertanggung jawab, kritis, kreatif, inovatif, demokratis, komunikatif) dalam merancang dan

- melakukan percobaan serta berdiskusi yang diwujudkan dalam sikap sehari-hari.
- 2.2 Menunjukkan perilaku kerjasama, santun, toleran, cinta damai dan peduli lingkungan serta hemat dalam memanfaatkan sumber daya alam.
- 2.3 Menunjukkan perilaku responsive dan pro-aktif serta bijaksana sebagai wujud kemampuan memecahkan masalah dan membuat keputusan.
- 3.4 Membedakan reaksi eksoterm dan reaksi endoterm berdasarkan hasil percobaan dan diagram tingkat energi.
- 3.5 Menentukan ΔH reaksi berdasarkan hukum Hess, data perubahan entalpi pembentukan standar, dan data energi ikatan.
- 4.4 Merancang, melakukan, menyimpulkan serta menyajikan hasil percobaan reaksi eksoterm dan reaksi endoterm.
- 4.5 Merancang, melakukan, dan menyimpulkan serta menyajikan hasil percobaan penentuan ΔH suatu reaksi.

C. Deskripsi Singkat Materi

Adapun topik yang dibahas pada modul ini meliputi:

- 1. Energi dan hukum kekekalan energi
- 2. Kalor reaksi, entalpi dan perubahan entalpi (ΔH)
- 3. Sistem, lingkungan dan alam semesta
- 4. Reaksi eksoterm dan endoterm
- 5. Persamaan termokimia

- 6. Perubahan entalpi standar
- 7. Penentuan kalor menggunakan calorimeter
- 8. Penentuan ΔH menggunakan hukum Hess
- 9. Penentuan ΔH menggunakan data perubahan entalpi pembentukan standar (ΔH^{o}_{f})
- 10. Penentuan ΔH menggunakan data energi ikatan

D. Petunjuk Penggunaan Modul

1. Awali kegiatan belajarmu dengan membaca doa berikut.

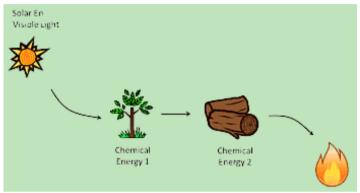
- 2. Lihatlah bagian yang dicari pada daftar isi.
- 3. Fahami seluruh informasi yang terdapat dalam modul.
- 4. Kerjakan setiap aktivitas dan latihan yang tersedia dalam modul.
- Cek hasil jawabanmu dengan melihat kunci jawaban yang disediakan.
- Lakukan penilaian diri setelah melakukan rangkaian kegiatan dalam modul.
- 7. Pelajari kembali modul ini jika hasil belajarmu belum optimal.
- 8. Akhiri kegiatan belajarmu dengan membaca doa berikut.

KEGIATAN PEMBELAJARAN 1

Saya percaya bahwa ilmu kimia saja hampir membuktikan keberadaan pencipta yang cerdas

~ Thomas Alva Edison ~

A. Tujuan Pembelajaran


Setelah melakukan kegiatan pembelajaran 1, diharapkan siswa dapat:

- 1. Menjelaskan bunyi hukum kekekalan energi
- 2. Memberikan contoh penerapan hukum kekekalan energi
- 3. Menjelaskan pengertian sistem dan lingkungan
- 4. Menyebutkan dan menjelaskan macam-macam sistem
- 5. Menjelaskan pengertian dan ciri-ciri reaksi eksoterm
- 6. Menjelaskan pengertian dan ciri-ciri endoterm
- 7. Memberikan contoh reaksi eksotem dan endoterm
- 8. Membuat diagram tingkat energi
- Melakukan percobaan untuk membedakan reaksi eksoterm dan endoterm
- 10. Menganalisis perbedaan reaksi eksoterm dan endoterm berdasarkan data hasil percobaan
- 11. Mempresentasikan hasil percobaan secara berkelompok
- 12. Membuat laporan hasil percobaan secara mandiri
- Meningkatkan rasa keimanan dan ketaqwaan terhadap Allah SWT
- 14. Mensyukuri segala nikmat yang diberikan Allah SWT
- 15. Menjaga lingkungan sekitar

B. Uraian Materi

Brainstorming

Gambar 1. Transformasi Energi Sumber: pngdownload.id

Dapatkah kamu menyebutkan jenis energi yang terdapat pada Gambar 1? Dapatkah energi tersebut dimusnahkan?

Matahari adalah sumber energi terbesar yang dapat menghasilkan energi cahaya dan panas yang menjadi sumber kehidupan di bumi. Energi cahaya yang dihasilkan matahari sangat dibutuhkan oleh makhluk hidup yang ada di bumi, tanpa terkecuali tumbuhan. Cahaya matahari yang diserap oleh tumbuhan digunakan untuk melakukan fotosintesis. Fotosintesis merupakan reaksi penting yang terjadi pada tumbuhan, yang mengkonversi cahaya matahari menjadi energi kimia yang disimpan dalam senyawa organik. Dengan demikian, pada

fotosintesis tersebut berlaku hukum kekekalan energi. Kira-kira apa bunyi dari hukum tersebut? Supaya tidak penasaran, ayo kita pelajari uraian materi berikut!

Tanaman Purun sebagai Energi Alternatif

Gambar 2. Tanaman Purun Sumber: Mongabay.co.id

Tanaman purun adalah salah satu kearifan lokal yang dimiliki oleh masyarakat di provinsi Kalimantan Selatan.

Sebelum tren "back to nature" menggeliat, masyarakat menganggap bahwa tanaman purun adalah gulma yang kehadirannya dianggap mengganggu tanaman pertanian, karena tergolong

sebagai tumbuhan liar yang dapat beradaptasi pada lahan rawa pasang surut. Namun, beberapa hasil penelitian menunjukkan bahwa tumbuhan ini memiliki banyak manfaat, diantaranya sebagai (1) bahan baku untuk membuat tikar, topi, tas; (2)

pakan ternak kerbau rawa; (3) tanaman perangkap penggerek batang padi putih; (4) pupuk organic; (5) biofilter; (6) penyerap unsur beracun (Asikin & Thamrin, 2012); (7) sedotan ramah lingkungan (Silvianingsih et al., 2022. Selain berbagai manfaat di atas, ternyata tumbuhan purun juga dapat digunakan sebagai bahan bakar alternatif untuk mengantisipasi krisis energi yang semakin tahun semakin terasa dampaknya (Susanti et al., 2015)

Agar purun dapat digunakan sebagai bahan bakar yang efektif, maka tumbuhan tersebut harus diolah menjadi biobriket. Biobriket merupakan sebuah batangan arang yang dibuat dengan bahan dasar limbah pertanian dan peternakan serta dicetak menggunakan alat press agar menghasilkan nilai kalor yang tinggi. Walaupun nilai kalor yang dihasilkan biobriket purun lebih kecil dari batubara (Susanti et al., 2015), tetapi biobriket dari purun lebih ramah lingkungan, ekonomis, memiliki daya panas yang lebih tinggi dan tahan lama dibanding bahan bakar minyak. Dengan diketahuinya beberapa fakta di atas, maka tumbuhan purun sebagai kearifan local masyarakat Kalimantan Selatan harus dilestarikan.

1. Energi dan hukum kekekalan energi

Energi didefinisikan sebagai kemampuan untuk melakukan usaha. Energi merupakan sesuatu yang dimiliki suatu zat yang

menyebabkan sesuatu yang lain terjadi. Sebagai contoh matahari yang memancarkan energinya dapat menyebabkan tanaman melakukan fotosintesis, pakaian yang dijemur menjadi kering, dan lampu-lampu jalan menyala di malam hari. Dengan demikian dapat difahami bahwasanya suatu benda yang memiliki energi dapat mempengaruhi benda lain dengan cara melakukan kerja pada benda lain tersebut.

Jumlah energi yang dimiliki suatu benda selalu bernilai tetap. Hal ini menimbulkan suatu hukum yang disebut dengan hukum kekekalan energi. Hukum ini menyatakan bahwa energi tidak dapat diciptakan atau dimusnahkan. Energi hanya dapat diubah dari satu bentuk ke bentuk lain. Penerapan hukum kekekalan energi ini dapat dilihat dalam kehidupan sehari-hari, seperti saat ibu memasak makanan menggunakan minyak tanah sebagai bahan bakar. Energi kimia yang terkandung dalam minyak tanah tersebut akan berubah menjadi energi panas yang menyebabkan makanan yang dimasak menjadi matang. Dalam kasus ini, energi kimia pada minyak tanah tidaklah musnah, melainkan dikonversi menjadi energi panas. Dari contoh tersebut, dapat dibuktikan bahwa energi tidak dapat kita musnahkan, tetapi dapat berubah dari satu bentuk ke bentuk lainnya.

Sang Pencipta Energi

Adakah makhluk di muka bumi ini yang dapat menciptakan energi? energi tidak seperti benda yang dapat dilihat dan disentuh. Jika manusia saja tidak bisa melihat dan merabanya, maka apakah bisa manusia menciptakan energi? Jika manusia tidak dapat menciptakan energi, lalu siapakah yang dapat menciptakannya? Dia-lah Allah SWT. yang telah menciptakan matahari beserta energinya, sebagaimana tertulis dalam Alquran surah Yunus ayat 5 yang berbunyi:

هُوَ الَّذِيْ جَعَلَ الشَّمْسَ ضِيَآءً وَّالْقَمَرَ نُوْرًا وَّقَدَرَهُ مَنَازِلَ لِتَعْلَمُوْا عَدَد السِّنِيْنَ وَالْحِسَابِّ مَا خَلَقَ اللهُ ذٰلِكَ اِلَّا بِالْحَقِّ يُفَصِّلُ الْأَيْتِ لِقَوْمٍ يَعْلَمُوْنَ

Yang artinya: "Dia-lah yang menjadikan matahari bersinar dan bulan bercahaya dan ditetapkan-Nya manzilah-manzilah (tempat-tempat) bagi perjalanan bulan itu, supaya kamu mengetahui bilangan tahun dan perhitungan (waktu). Allah tidak menciptakan yang demikian itu melainkan dengan hak dia menjelaskan tanda-tanda (kebesaran-Nya) kepada orang-orang yang mengetahui"

Ayat ini menerangkan bahwa Allah SWT. menciptakan matahari dan energi yang dimilikinya sebagai dasar hidup dan kehidupan, dan dengan kebesaran-Nya, Allah SWT. mampu

mengubah cahaya matahari menjadi energi kimia yang tersimpan dalam tumbuhan, batubara, dan minyak bumi (Supardi, 2017). Ketiga materi ini memiliki banyak manfaat untuk kehidupan manusia di bumi, seperti batubara dan minyak bumi yang dapat dijadikan sebagai bahan bakar skala rumah tangga dan industri; beberapa tumbuhan dapat digunakan sebagai sumber makanan serta bahan bakar alternatif berupa biobriket. Lalu, bagaimana jika suatu saat cahaya matahari yang memasuki bumi terhalang kabut tebal, apakah tumbuhan tetap dapat bertahan hidup? Dapatkah kamu membayangkan bahwa akan banyak hewan dan manusia yang mati kelaparan karena kekurangan sumber makanan? Untuk itu kita sebagai makhluk yang mengetahui fungsi berbagai materi yang disebutkan di atas tadi, wajib bersyukur dengan cara menjaga kelestarian lingkungan serta menyadari bahwasanya kebesaran-kebesaran yang Allah SWT. ciptakan di muka bumi ini sebagai pengingat bagi kita untuk senantiasa meningkatkan keimanan dan ketaqwaan kita terhadap Allah SWT.

2. Kalor reaksi, entalpi dan perubahan entalpi

Salah satu bentuk energi yang lazim kita jumpai adalah panas. Energi panas dapat berpindah dari benda bersuhu tinggi ke benda bersuhu rendah. Energi panas yang berpindah ini disebut dengan kalor (q). Dalam setiap reaksi kimia selalu ada kalor yang dihasilkan ataupun diserap, dan ilmu yang mempelajarinya disebut termokimia. Meskipun kalor reaksi ini tidak dapat kita lihat, tetapi tanpa disadari kalor reaksi benarbenar ada di kehidupan sehari-hari. Contohnya pada reaksi pembakaran bahan bakar seperti briket arang yang melepaskan sejumlah kalor ke lingkungan, yang dibuktikan dengan

matangnya air/masakan yang kita masak; dan pada reaksi fotosintesis, dimana tanaman menyerap energi (kalor) dari matahari untuk mengubah karbon dioksida (CO₂) dan air (H₂O) menjadi molekul glukosa (C₆H₁₂O₆) dan oksigen (O₂).

Reaksi kimia (sistem) selalu disertai dengan penerimaan atau pelepasan kalor, dan biasanya juga terjadi pada tekanan tetap. Kalor reaksi sistem yang diukur pada tekanan tetap ini disebut dengan perubahan entalpi (ΔH) , yang nilainya hanya

Notasi dari entalpi yaitu H, berasal dari huruf awal frasa "Heat of Content" yang artinya kalor isi/kandungan. Ini mengindikaskan bahwa entalpi merupakan jumlah kalor atau energi yang terkandung dalam suatu materi

bergantung pada keadaan awal dan akhir (Brady, 1999).

Pernyataan tersebut dapat dirumuskan ke dalam persamaan berikut.

$$q_p = \Delta H = H(produk) - H(reaktan)$$

3. Sistem, lingkungan dan alam semesta

Pada pembahasan sebelumnya, kita menjumpai istilah sistem dan lingkungan. Sebenarnya, apa itu sistem dan lingkungan? Sistem adalah bagian dari alam semesta yang sedang menjadi pusat perhatian, sedangkan lingkungan adalah bagian lain dari alam semesta yang berinteraksi dengan sistem. Jadi, alam semesta merupakan gabungan antara sistem dan lingkungan. Allah SWT. telah mengatur alam semesta ini sedemikian rupa, sehingga alam ini mengandung sistem dalam jumlah tak hingga, dari yang berukuran kecil sampai yang berukuran besar. Contoh sistem berukuran besar adalah planet bumi yang senantiasa menyerap energi dari matahari. Dari contoh sistem yang berukuran besar ini (bumi) dapat difahami bahwa bagian lain dari bumi (matahari, bintang, bulan dan masih banyak lagi) dapat kita sebut sebagai lingkungan. Contoh sistem lainnya adalah tubuh kita yang menyerap kalor dari api unggun. Pada kasus ini, bagian lain dari tubuh (udara di sekitar kita) disebut dengan lingkungan.

Pada paragraf sebelumnya cukup terlihat jelas bahwa selalu ada interaksi antara lingkungan dan sistem, dimana terjadi pertukaran energi diantara keduanya. Namun, taukah kamu bahwa sebenarnya dalam interaksi tersebut juga memungkinkan terjadinya pertukaran materi? Jadi, berkaitan dengan hal tersebut, maka sistem dibedakan menjadi 3, yaitu sistem terbuka, tertutup dan terisolasi (Subhan, 2013).

1. Sistem terbuka

Pada sistem ini, baik energi ataupun materi dapat dipertukarkan dengan lingkungannya. Contohnya adalah air dalam gelas yang dibiarkan saja selama beberapa hari akan menguap yang menyebabkan volum air di dalam gelas tersebut berkurang. Dari fakta ini dapat disimpulkan bahwa terjadi pertukaran materi dan energi yang dibuktikan dengan berkurangnya volum air karena sebagian menguap akibat panas yang diterima oleh air dalam gelas tersebut.

2. Sistem tertutup

Pada sistem tertutup, hanya energi yang dapat dipertukarkan dengan lingkungan. Contohnya adalah nasi panas yang dimasukkan ke dalam toples berpenutup yang lama-kelamaan menjadi dingin. Dari contoh ini dapat kita ketahui bahwa hanya terjadi perpindahan energi panas/kalor dari nasi (sistem) ke lingkungan yang menyebabkan nasi menjadi dingin.

3. Sistem terisolasi

Pada sistem terisolasi ini, baik energi ataupun materi tidak dapat dipertukarkan dengan lingkungannya. Contohnya adalah air panas dalam termos.

4. Reaksi eksoterm dan endoterm

Terdapat dua jenis reaksi kimia berdasarkan kalor yang dilepas/diserap sistem yaitu reaksi eksoterm dan endoterm. Reaksi eksoterm adalah reaksi kimia yang berlangsung dengan melepaskan kalor ke lingkungan, sedangkan reaksi endoterm adalah reaksi kimia yang berlangsung dengan menyerap kalor dari lingkungan. Adapun ciri-ciri reaksi eksoterm yaitu kalor berpindah dari sistem ke lingkungan, suhu sistem turun sedangkan suhu lingkungan naik, dan ΔH bernilai negatif. Sementara itu, ciri-ciri reaksi endoterm merupakan kebalikan dari reaksi eksoterm yaitu kalor berpindah dari lingkungan ke sistem, suhu sistem meningkat sedangkan suhu lingkungan menurun, dan ΔH bernilai positif (Subhan, 2013).

Gambar 3. Api Unggun Sumber: Detikcom

Contoh reaksi eksoterm dan endoterm sering kita jumpai dalam kehidupan sehari-hari. Contoh reaksi eksoterm adalah

pembakaran kayu untuk membuat api unggun. Pada reaksi tersebut dilepaskan kalor ke lingkungan yang menyebabkan udara di sekitarnya menjadi hangat. Contoh reaksi eksoterm yang lain adalah proses pembakaran glukosa yang terjadi dalam tubuh saat berolahraga, yang menyebabkan tubuh jadi berkeringat karena panas yang dihasilkan.

Adapun contoh reaksi endoterm dalam kehidupan sehari-hari adalah reaksi fotosintesis pada tumbuhan untuk menghasilkan gula. Persamaan reaksinya dapat dilihat di bawah ini.

$$6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2 \Delta H = + x \text{ joule}$$

Dari persamaan reaksi di atas diketahui bahwa diperlukan sejumlah energi agar reaksi fotosintesis dapat berlangsung. Contoh reaksi endoterm yang lainnya adalah penguapan air. Pada reaksi penguapan air ini, sejumlah energi dipindahkan dari lingkungan ke dalam sistem yang menyebabkan suhu sistem (air) meningkat, sehingga sebagian air menguap. Untuk memudahkan kamu memahami perbedaan reaksi eksoterm dan endoterm, perhatikanlah Tabel 1 berikut.

Tabel 1. Perbedaan Reaksi Eksoterm dan Endoterm

Perbedaan	Reaksi Eksoterm	Reaksi Endoterm
Energi panas	Sistem melepas kalor	Sistem menerima kalor
Suhu lingkunga n	Naik	Turun
ΔΗ	(-)	(+)
Diagram tingkat energi	Reaktan AH = Hp - Hr < 0 Produk	Produk P ΔH = Hp - Hr > 0 Reaktan

C. Aktivitas Pembelajaran

Lakukan kegiatan berikut bersama teman kelompokmu, dan jawablah pertanyaan yang diberikan secara singkat dan jelas.

Coba Kimia Reaksi Eksoterm dan Endoterm

a. Tujuan kegiatan

Siswa mampu membedakan reaksi eksoterm dan endoterm berdasarkan hasil percobaan

b. Alat dan bahan yang digunakan

Tabung reaksi Akuades

Thermometer NaOH padat

Gelas ukur NH₄Cl padat

Batang pengaduk

c. Prosedur kerja

- 1. Masukkan 5 mL akuades ke dalam tabung reaksi.
- 2. Ukur suhu awal akuades dalam tabung reaksi (T₁)
- 3. Masukkan 0,5 g padatan NaOH ke dalam tabung reaksi yang berisi akuades secara hati-hati.
- 4. Aduk hingga seluruh NaOH larut

- 5. Ukur suhu larutan (T₂)
- 6. Catat hasil pengamatanmu pada Tabel 2 dan 3
- 7. Ulangi langkah 1-6, dan gunakan NH₄Cl sebagai zat terlarutnya.

d. Hasil pengamatan

Catatlah hasil pengamatanmu secara jujur pada Tabel 2 dan 3 di bawah ini.

Tabel 2. Hasil Pengamatan NaOH yang Dilarutkan ke dalam Akuades

Suhu (°C)		
Akuades	Akuades + NaOH	Kesimpulan

Tabel 3. Hasil Pengamatan NH₄Cl yang Dilarutkan ke dalam Akuades

Suhu (°C)		
Akuades	Akuades + NH4Cl	Kesimpulan

e. Analisis data

Jawablah sejumlah pertanyaan berikut!

1.	Apakah terjadi kenaikan suhu saat NaOH dilarutkan ke dalam akuades?
2.	Apa yang tangan kamu rasakan saat padatan NaOH dimasukkan ke dalam akuades?
3.	Berikan pendapatmu mengenai perpindahan kalor pada reaksi pelarutan NaOH di atas!
4.	Berdasarkan hasil analisis data yang telah kamu lakukan, Apakah benar bahwa pelarutan NaOH ke dalam akuades
	termasuk reaksi eksoterm? Berikan buktinya!
5.	
6.	Apakah terjadi penurunan suhu saat NH ₄ Cl dilarutkan ke

	dalam akuades?
7.	Apa yang tangan kamu rasakan saat padatan NH ₄ Cl
	dimasukkan ke dalam akuades?
8.	Berikan pendapatmu mengenai perpindahan kalor pada reaksi
0.	pelarutan NH ₄ Cl di atas!
0	Designation has been been determined to the large telephone
9.	
	Apakah benar bahwa pelarutan NH ₄ Cl ke dalam akuades
	termasuk reaksi endoterm? Berikan buktinya!
10	. Buatlah diagram tingkat energi dari reaksi pelarutan NH ₄ Cl!

f.	Kesimpulan
	Tulis kesimpulan yang kamu peroleh!

D. Latihan Soal

Kerjakan soal berikut secara mandiri dan jujur. Berikan tanda silang pada jawaban yang tepat!

- 1. Besarnya kalor yang diterima atau dibebaskan sistem pada tekanan tetap bernilai sama dengan ...
 - a. ΔU
- d. W
- b. AS
- e. H
- c. ΔH
- Kegiatan berlari akan membuat tubuhmu mengeluarkan keringat, karena panas dalam tubuh dilepaskan ke lingkungan. Hal ini menunjukkan bahwa reaksi tersebut merupakan reaksi
 - a. Pembakaran
- d. Respirasi
- b. Endoterm
- e. Fotosintesis
- c. Eksoterm
- 3. Jika pita Mg dimasukkan ke dalam larutan HCl menyebabkan kenaikan suhu larutan sebesar 2°C, maka reaksi tersebut tergolong ke dalam reaksi ...
 - a. Pembakaran
- d. Respirasi
- b. Endoterm
- e. Fotosintesis
- c. Eksoterm
- 4. Panas yang terdapat pada tubuhmu diserap oleh hawa dingin hingga kamu merasa kedinginan. Hal ini menunjukkan bahwa reaksi tersebut merupakan reaksi ...

- a. Eksoterm d. Kimia
- b. Endoterm e. Pembakaran
- c. Pelepasan kalor
- 5. Berdasarkan soal nomor 4, yang berperan sebagai sistem adalah ...
 - a. Udara dingin d. Tubuh
 - b. Jaket e. Udara panas
 - c. Tanaman di sekitar
- 6. Pernyataan yang benar mengenai reaksi endoterm adalah ...
 - a. Sistem melepaskan kalor ke lingkungan
 - b. Lingkungan menerima kalor dari sistem
 - c. $H_{produk} > H_{reaktan}$
 - d. $H_{produk} < H_{reaktan}$
 - e. $T_{akhir} > T_{awal}$
- 7. Jika padatan NH₄Cl dimasukkan ke dalam tabung reaksi berisi air, maka tabung reaksi akan menjadi lebih dingin. Hal ini menunjukkan bahwa reaksi tersebut merupakan reaksi ...
 - a. Endoterm karena sistem menyerap kalor
 - b. Eksoterm karena sistem melepaskan kalor
 - c. Endoterm karena sistem melepaskan kalor
 - d. Eksoterm karena sistem menyerap kalor
 - e. Endoterm karena kalor berpindah dari sistem ke lingkungan
- 8. Yang termasuk sistem terisolasi adalah ...
 - a. Air panas yang dimasukkan ke dalam botol plastic berpenutup

- b. Nasi panas yang dimasukkan ke dalam kotak berpenutup
- c. Sejumlah bahan makanan yang ingin diketahui nilai kalorinya dimasukkan ke dalam kalorimeter bomb
- d. NaOH yang dimasukkan ke dalam beaker berisi akuades
- e. Rumah kaca
- 9. Yang termasuk reaksi endoterm adalah ...
 - a. Reaksi CaO dan air
 - b. Reaksi Fotosintesis pada tanaman
 - c. Reaksi NaOH dan air
 - d. Reaksi pembakaran gas metana
 - e. Reaksi pita Mg dan HCl
- 10. Pernyataan berikut yang tidak berkaitan dengan hukum kekekalan energi adalah ...
 - a. Energi tidak dapat diciptakan
 - Energi hanya dapat berubah dari satu bentuk ke bentuk lainnya
 - c. Energi cahaya yang dipancarkan oleh matahari berubah menjadi energi kimia yang tersimpan dalam tanaman.
 - d. Energi tidak dapat dimusnakan
 - e. Hukum kekekalan energi dikenal juga dengan hukum kedua termodinamika

E. Kunci Jawaban

Cocokkan jawabanmu dengan kunci jawaban berikut!

- 1. c
- 2. c
- 3. c
- 4. b
- 5. d
- 6. c
- 7. a
- 8. c
- 9. b
- 10. e

Laporkan nilai yang kamu peroleh kepada gurumu. Jika nilaimu di bawah 70, pelajari kembali materi-materi tersebut.

F. Penilaian Diri

Baca dengan seksama dan teliti bagian berikut. Berikan penilaian terhadap dirimu sendiri apa adanya dengan memberi tanda centang ($\sqrt{}$) pada kolom "ya" atau "tidak" berdasarkan pernyataan yang sedang dinilai. Penilaian ini akan sangat berarti bagimu, agar kamu dan gurumu dapat mengetahui bagian yang belum difahami dengan baik.

No	Pernyataan	Ya	Tidak
1	Saya dapat menjelaskan bunyi hukum		
	kekekalan energi		
2	Saya dapat memberikan 1 bukti dari		
	penerapan hukum kekekalan energi		
3	Saya dapat menjelaskan definisi sistem		
4	Saya dapat memerinci 3 jenis sistem yang		
	sudah saya pelajari pada materi termokimia		
5	Saya dapat membedakan ketiga jenis sistem		
	yang sudah saya pelajari pada materi		
	termokimia		
6	Saya dapat memberikan contoh setiap sistem		
	yang dipelajari pada materi termokimia		
7	Saya dapat menjelaskan definisi lingkungan		
8	Saya dapat membedakan sistem, lingkungan,		
	dan alam semesta		
9	Saya dapat menjelaskan definisi reaksi		

	eksoterm	
10	Saya dapat menjelaskan definisi reaksi	
	endoterm	
11	Saya mengetahui perbedaan reaksi eksoterm	
	dan endoterm dengan jelas	
12	Setidaknya saya dapat memberikan 3 contoh	
	reaksi eksoterm	
13	Setidaknya saya dapat memberikan 3 contoh	
	reaksi endoterm	
14	Saya mengetahui bahwa kalor yang terjadi	
	pada tekanan tetap dikenal dengan istilah ΔH	
15	Saya dapat menjelaskan bahwa entalpi	
	merupakan fungsi keadaan yang nilainya	
	tergantung pada keadaan awal dan akhir	
16	Saya dapat menginternalisasi nilai-nilai religi	
	yang terkandung dalam materi yang sudah	
	saya pelajari	
17	Setelah mempelajari materi ini, setidaknya	
	saya semakin yakin tentang ke-Agung-an dan	
	ke-Esa-an Allah SWT.	

Jika terdapat jawaban "tidak" pada butir pernyataan di atas, berusahalah untuk mengulang bagian tersebut. Jika usaha yang kamu lakukan belum berhasil, mintalah bantuan kepada teman ataupun gurumu untuk menjelaskannya!

G. Rubrik Penilaian Diri

No	Rubrik Penilaian
1	Ya = jika dapat menjelaskan hukum kekekalan energi yang
	berbunyi energi tidak dapat diciptakan atau dimusnahkan
	Tidak = jika tidak dapat menjelaskan hukum kekekalan
	energi yang berbunyi energi tidak dapat diciptakan atau
	dimusnahkan
2	Ya = jika dapat menyebutkan salah satu contoh dari
	penerapan hukum kekekalan energi. Contohnya: dalam
	proses fotosintesis tanaman energi matahari diubah menjadi
	energi kimia yang tersimpan dalam tanaman, saat memasak
	makanan, energi kimia dalam biobriket diubah menjadi
	energi panas, saat menghangatkan tubuh dengan api
	unggun, energi kimia dalam kayu bayu bakar diubah
	menjadi energi panas, dsb.
	Tidak = jika tidak dapat menyebutkan salah satu contoh
	dari penerapan hukum kekekalan energi
3	Ya = jika dapat menjelaskan bahwa sistem adalah bagian
	dari alam semesta yang menjadi pusat perhatian
	Tidak = jika tidak dapat menjelaskan bahwa sistem adalah
	bagian dari alam semesta yang menjadi pusat perhatian
4	Ya = jika dapat merinci 3 jenis sistem, yaitu:
	Sistem terbuka, pada sistem ini baik energi ataupun materi
	dapat dipertukarkan ke lingkungan

	Sistem tertutup, pada sistem ini hanya energi yang dapat
	dipertukarkan ke lingkungan
	Sistem terisolasi, pada sistem ini baik energi ataupun materi
	tidak dapat dipertukarkan
	Tidak = jika tidak dapat merinci 3 jenis sistem yang sudah
	disebutkan di atas
5	Ya = jika dapat membedakan ketiga jenis sistem
	berdasarkan pertukaran energi dan materi ke lingkungan
	sebagaimana penjelasan di atas
	Tidak = jika tidak dapat membedakan ketiga jenis sistem
	berdasarkan pertukaran energi dan materi ke lingkungan
	sebagaimana penjelasan di atas
6	Ya = jika dapat menyebutkan contoh setiap sistem, misal:
	Sistem terbuka: air panas dalam gelas terbuka, nasi panas di
	atas piring, kayu yang dibakar di pekarangan, dan berbagai
	jenis reaksi kimia yang direaksikan dalam gelas atau tabung
	reaksi tanpa penutup.
	Sistem tertutup: nasi panas dalam kotak nasi
	Sistem terisolasi: air panas dalam termos, reaksi
	pembakaran dalam calorimeter bomb
	Tidak = jika tidak dapat menyebutkan contoh setiap sistem
7	Ya = jika dapat menjelaskan bahwa lingkungan adalah
	bagian lain dari alam semesta yang berinteraksi dengan
	sistem
	Tidak = jika tidak dapat menjelaskan bahwa lingkungan

	adalah bagian lain dari alam semesta yang berinteraksi
	dengan sistem
8	Ya = jika dapat membedakan sistem, lingkungan dan alam
	semesta
	Alam semesta adalah gabungan antara sistem dan
	lingkungan
	Sistem adalah bagian dari alam semesta yang menjadi pusat
	perhatian
	Lingkungan adalah bagian lain dari alam semesta yang
	berinteraksi dengan sistem
9	Ya = jika dapat menjelaskan bahwa reaksi eksoterm adalah
	reaksi kimia yang berlangsung dengan melepaskan kalor ke
	lingkungan
	Tidak = jika tidak dapat menjelaskan bahwa reaksi
	eksoterm adalah reaksi kimia yang berlangsung dengan
	melepaskan kalor ke lingkungan
10	Ya = jika dapat menjelaskan bahwa reaksi endoterm adalah
	reaksi kimia yang berlangsung dengan menerima kalor dari
	lingkungan
	Tidak = jika tidak dapat menjelaskan bahwa reaksi
	endoterm adalah reaksi kimia yang berlangsung dengan
	menerima kalor dari lingkungan
11	Ya = jika dapat membedakan reaksi eksoterm dan
	endoterm, dengan perbedaan sebagai berikut
	Eksoterm: sistem melepaskan kalor, suhu lingkungan naik,

	$\Delta H < 0$
	Endoterm: sistem menerima kalor, suhu lingkungan turun,
	$\Delta H > 0$
	Tidak = jika tidak dapat menyebutkan perbedaan reaksi
	eksoterm dan endoterm sebagaimana penjelasan di atas
12	Ya = jika dapat memberikan 3 contoh reaksi eksoterm
	Contohnya:
	1. reaksi pembakaran kayu bakar/biobriketr/reaksi
	pembakaran lainnya
	2. reaksi pelarutan NaOH ke dalam air
	3. reaksi netralisasi NaOH dan HCl
	Tidak = jika tidak dapat memberikan 3 contoh reaksi
	eksoterm.
13	Ya = jika dapat memberikan 3 contoh reaksi endoterm
	Contohnya:
	1. reaksi fotosintesis tanaman
	2. reaksi pelarutan NH ₄ Cl ke dalam air
	3. reaksi penguapan air
	Tidak = jika tidak dapat memberikan 3 contoh reaksi
	endoterm.
14	$Ya = jika$ mengetahui bahwa ΔH adalah q_p
	Tidak = jika tidak mengetahui bahwa ΔH adalah q_p
15	Ya = jika dapat menjelaskan bahwa perubahan entalpi (ΔH)
	nilainya hanya bergantung pada keadaan awal dan akhir
	dengan formula: $\Delta H = H(produk) - H(reaktan)$

	Tidak = jika tidak dapat menjelaskan bahwa perubahan			
	entalpi (ΔH) nilainya hanya bergantung pada keadaan awal			
	dan akhir dengan formula: $\Delta H = H(produk) - H(reaktan)$			
16	Ya = jika dapat menginternalisasi nilai-nilai religius yang			
	ada pada materi yang sudah dipelajari, misalnya:			
	1. Allah adalah Sang Pencipta energi, manusia hanya			
	mampu mengonversinya.			
	2. Allah menciptakan alam semesta yang mengandung			
	sistem dalam jumlah tak hingga dan mengaturnya untuk			
	kelangsungan hidup manusia.			
	3. Allah menciptakan matahari sebagai sumber energi			
	utama dan mengatur siklus energi agar manusia dapat			
	menggunakan energi tersebut dalam kehidupan.			
	4. Manusia patut bersyukur atas nikmat energi yang			
	diberikan oleh Allah. Tanpa energi tanaman tidak			
	mampu berfotosintesis dan manusia akan kelaparan.			
	5. Manusia sebagai khalifah di muka bumi ini harus			
	menjaga kelestarian lingkungan sebagai wujud syukur			
	kepada Allah.			
	Tidak = jika tidak dapat menginternalisasi nilai-nilai			
	religius yang ada pada materi yang sudah saya pelajari			
17	Ya = jika semakin yakin dengan ke-Agung-an dan ke-Esa			
	an Allah			
	Tidak = jika tidak meyakini ke-Agung-an dan ke-Esa-an			
	Allah			

KEGIATAN PEMBELAJARAN 2

Apa yang kamu pelajari dari kehidupan dalam sains adalah luasnya ketidaktahuan kita

~ Cristhoper Hitchens ~

A. Tujuan Pembelajaran

Setelah melakukan kegiatan pembelajaran 2, diharapkan siswa dapat:

- 1. Menuliskan persamaan termokimia dengan benar
- 2. Menjelaskan pengertian ΔH pembentukan standar (ΔH^0_f), penguraian standar (ΔH^0_d), pembakaran standar (ΔH^0_c) dan netralisasi standar (ΔH^0_n).
- 3. Melakukan perhitungan terkait ΔH pembentukan standar (ΔH^0_f) , penguraian standar (ΔH^0_d) , pembakaran standar (ΔH^0_c) dan netralisasi standar (ΔH^0_n) .
- Menentukan ΔH reaksi berdasarkan data percobaan dengan menggunakan kalorimeter
- Melakukan percobaan untuk menentukan kalor pembakaran suatu bahan bakar
- 6. Mempresentasikan hasil percobaan yang telah dilakukan secara berkelompok
- 7. Membuat laporan hasil percobaan secara mandiri
- 8. Meningkatkan rasa keimanan dan ketaqwaan terhadap Allah SWT
- 9. Mensyukuri segala nikmat yang diberikan Allah SWT
- 10. Menjaga lingkungan sekitar

B. Uraian Materi

Brainstorming

Gambar 4. Kalorimeter SederhanaSumber: profmikra.org

Tahukah kamu apa fungsi dari alat di atas?

Di kelas X tentu kamu sudah belajar tentang persamaan reaksi bukan? Menurut kamu, apakah persamaan reaksi sama dengan persamaan termokimia? Sebelum kamu lanjut, ada baiknya kalian mengingat kembali mengenai definisi termokimia, penyetaraan dan koefisien reaksi, serta stoikiometri kimia. Materi-materi prasyarat tersebut sangat penting dipelajari untuk memudahkan kamu dalam memahami topik-topik yang akan dibahas pada kegiatan pembelajaran 2 berikut.

Sang Jawara si Tanaman Purun

Kalimantan adalah salah satu pulau yang memiliki lahan gambut terbesar kedua setelah Sumatera. Luas lahan gambut di Kalimantan adalah 32% dari 20,6 juta hektar luas lahan gambut di Indonesia. Sejumlah tumbuhan liar seperti gulma dapat tumbuh subur di lahan tersebut, dan terkadang kehadirannya tidak diinginkan karena menurunkan hasil yang bisa dicapai oleh tanaman produksi.

Seiring dengan melimpahnya jumlah gulma yang tumbuh di lahan gambut tersebut. maka masyarakat dapat menggunakan keberadaan gulma tersebut untuk dimanfaatkan sebagai bahan bakar alternatif berupa biobriket. Susanti dkk (2015) telah melakukan riset ke sejumlah gulma yang tumbuh di lahan gambut Kalimantan seperti kelakai, pakis-pakisan, eupatorium, gulma bunga kuning, karamunting kodok, rumput gajah, kumpai minyak, anggrek tanah bunga pentol, purun, dan rumput bundung. Hal ini dilakukan untuk mengetahui kualitas briket dari masing-masing biomassa gulma tersebut. Salah satu parameter yang diuji yaitu nilai kalor dari setiap biobriket yang dihasilkan.

Hasil penelitian menunjukkan bahwa purun merupakan jenis gulma yang menghasilkan biobriket terbaik dengan nilai kalor sebesar 4.647,9 kal/g. Adapun nilai kalor untuk setiap jenis gulma yang diolah menjadi biobriket diberikan pada Tabel 4 berikut.

Tab No	el 4. Nilai Kalor Biobrike Gulma	t dari Berbagai Gulma Nilai Kalor (kal/g)
1	Kelakai	3.873,03
2	Rumput gajah	4.302,70
3	Anggrek tanah Bunga	4.585,43
	pentol	
4	Purun tikus	4.647,93
5	Eupatorium	4.055,37
6	Pakis-pakisan	4.368,63
7	Karamunting kodok	3.835, 27
8	Rumput bundung	3.492,57
9	Kumpai minyak	3.658,07
10	Gulma bunga kuning	4.160,97
		(Susanti dkk, 20

Gulma Tak Diciptakan Sia-sia

Dalam pandangan ilmu kimia, sesungguhnya tidak ada limbah dalam arti sesuatu yang tidak bermanfaat. Semuanya dapat direkayasa menjadi sesuatu yang berguna. Hal ini ditegaskan oleh Allah SWT dalam surah Ali Imran ayat 191 yang berbunyi:

الَّذِيْنَ يَذْكُرُوْنَ اللهَ قِيَامًا وَّقُعُوْدًا وَعَلَى جُنُوْبِهِمْ وَيَتَفَكَّرُوْنَ فِيْ خَلْقِ السَّمَوٰتِ وَالْأَرْضِّ رَبَّنَا مَا خَلَقْتَ هٰذَا بَاطِلًا ۚ سُبُحْنَكَ فَقِنَا عَذَابَ النَّارِ

Yang artinya: "(yaitu) orang-orang yang mengingat Allah' sambil berdiri, duduk atau dalam keadaan berbaring, dan mereka memikirkan tentang penciptaan langit dan bumi (seraya berkata), "Ya Tuhan kami, tidaklah Engkau menciptakan semua ini sia-sia; Mahasuci Engkau, lindungilah kami dari azab neraka."

Sama halnya dengan gulma yang selama ini dipandang sebagai tanaman pengganggu, ternyata juga memiliki kegunaan. Berdasarkan studi literature yang dilakukan, gulmagulma yang terdapat di Provinsi Kalimantan Selatan (Tabel 4) potensial digunakan sebagai bahan baku dalam pembuatan bahan bakar. Teknologi yang digunakan dalam pembuatan bahan bakar dari gulma tersebut juga sederhana dan mudah dipraktikan. Dari hasil studi tersebut dapat disimpulkan bahwa

gulma yang dianggap tidak memiliki manfaat sekalipun, ternyata memiliki nilai ekonomis yang tidak terduga. Masih terkait dengan pembahasan di atas, dapat kita fahami bahwasanya tujuan penciptaan sumber daya alam ini tidak hanya untuk menyokong kehidupan manusia, tetapi lebih dari itu yaitu sebagai renungan bagi manusia yang mau berpikir bahwa ada tanda-tanda kebesaran Allah SWT dalam setiap makhluk ciptaanNya. Pernyataan ini dipertegas dalam Surah Lukman ayat 20 yang berbunyi:

اَلَمْ تَرَوْا اَنَّ اللهَ سَخَّرَ لَكُمْ مَّا فِي السَّمُوٰتِ وَمَا فِي الْأَرْضِ وَاسْبَغَ عَلَيْكُمْ نِعَمَهُ ظَاهِرَةً وَبَاطِنَةً وَمِنَ النَّاسِ مَنْ يُجَادِلُ فِي اللهِ بِغَيْرِ عِلْمٍ عَلَيْكُمْ نِعَمَهُ ظَاهِرَةً وَبَاطِنَةً وَمِنَ النَّاسِ مَنْ يُجَادِلُ فِي اللهِ بِغَيْرِ عِلْمٍ عَلْمِهُ وَكَا يَكُنّبِ مُنْفِي وَلَا كُتُبِ مُنْفِي

Yang artinya: "tidakkah kamu memperhatikan bahwa Allah telah menundukkan apa yang ada di langit dan apa yang ada di bumi untuk (kepentingan)mu dan menyempurnakan nikmat-Nya untukmu lahir dan batin. Tetapi di antara manusia ada yang membantah tentang (keesaan) Allah tanpa ilmu atau petunjuk dan tanpa Kitab yang memberi penerangan"

1. Persamaan termokimia

Persamaan termokimia adalah persamaan reaksi yang menyertakan perubahan entalpinya (ΔH). Pada penulisan persamaan termokima disertakan pula jumlah mol zat yang bereaksi dan wujud fisik zat yang terlibat dalam reaksi. Nilai ΔH yang dituliskan pada persamaan termokimia harus sesuai dengan stoikiometri reaksi, artinya jumlah mol zat yang terlibat dalam reaksi sama dengan koefisien reaksinya (Subhan, 2015).

Contoh:

a. Diketahui persamaan termokimia berikut:

 $H_2(g) + 1/2O_2(g) \rightarrow H_2O(1)$ $\Delta H = -285,85 \text{ kJ/mol}$

Artinya, pada pembentukan 1 mol H₂O dari 1 mol gas hydrogen dan ½ mol gas oksigen dibebaskan energi sebesar 285,85 kJ. Kata

"dibebaskan" mengindikasikan bahwa ΔH bernilai negative (–) atau bersifat eksoterm.

b. Diketahui persamaan termokimia berikut:

$$NaHCO_3(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l) + CO_2(g)$$
 $\Delta H = +11.8 \text{ kJ/mol}$

Artinya, dari reaksi antara 1 mol larutan NaHCO $_3$ dan 1 mol larutan HCl dihasilkan 1 mol NaCl, 1 mol H $_2$ O, dan 1 mol CO $_2$ disertai penyerapan kalor sebesar 11,8 kJ/mol. Kata "penyerapan" mengindikasikan bahwa Δ H bernilai positif (+) atau bersifat endoterm.

2. Perubahan entalpi standar (ΔH°)

Perubahan entalpi standar (ΔH°) adalah suatu perubahan entalpi reaksi yang diukur pada kondisi standar, yaitu pada suhu 25°C dan tekanan 1 atm. Beberapa jenis perubahan entalpi standar yaitu:

a. Perubahan entalpi pembentukan standar $(\Delta H^{\circ}{}_{f})$

Menyatakan perubahan entalpi pada pembentukan 1 mol senyawa dari unsur-unsurnya pada kondisi standar.

Contoh:

1.
$$C(s) + O_2(g) \rightarrow CO_2(g) \Delta H^{\circ}_f = -393,5 \text{ kJ/mol}$$

koefisien 1 berarti 1 mol CO

Artinya pada pembentukan 1 mol gas CO₂ dari C (grafit) dan O₂ (oksigen) melepaskan kalor sebesar 393,5 kJ/mol

(tanda negative pada ΔH°_{f} berarti melepaskan energi atau reaksi eksoterm).

2.
$$4C(s) + 2H_2(g) \rightarrow 2C_2H_2(g)$$
 $\Delta H = +454 \text{ kJ}$

Koefisien 2 berarti 2 mol C_2H_2 , maka semua koefisien reaksi dibagi 2 termasuk ΔH

Reaksi menjadi:

$$2C(s) + H_2(g) \rightarrow C_2H_2(g) \quad \Delta H^{\circ}{}_f = +227 \; kJ/mol$$

Artinya pada pembentukan 1 mol C_2H_2 dari unsur karbon dan hydrogen dibutuhkan panas sebesar 227 kJ/mol (tanda positif pada ΔH berarti reaksi menyerap kalor atau reaksi endoterm)

b. Perubahan entalpi penguraian standar (ΔH°_{d})

Menyatakan perubahan entalpi pada penguraian 1 mol senyawa menjadi unsur-unsurnya pada keadaan standar.

Contoh:

1.
$$H_2O(l) \rightarrow H_2(g) + 1/2O_2(g) \Delta H^{\circ}_d = +286 \text{ kJ/mol}$$

koefisien 1 berarti 1 mol H₂O

Artinya pada penguraian 1 mol H_2O berfase cair menjadi H_2 (gas hydrogen) dan O_2 (gas oksigen) memerlukan kalor sebesar 286 kJ/mol.

2. $2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$ $\Delta H = +92 \text{ kJ}$

koefisien 2 berarti 2 mol NH3, maka semua koefisien reaksi dibagi 2 termasuk ΔH

Reaksi menjadi:

$$NH_3(g) \rightarrow 1/2N_2(g) + 2/3H_2(g) \Delta H_d^\circ = +46 \text{ kJ/mol}$$

Artinya pada penguraian 1 mol NH_3 menjadi H_2 (gas hydrogen) dan N_2 (gas nitrogen) memerlukan kalor sebesar 46 kJ/mol.

c. Perubahan entalpi pembakaran standar (ΔH°_{c})

Menyatakan perubahan entalpi pada pembakaran sempurna 1 mol senyawa pada kondisi standar.

Contoh:

1.
$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O(g) \Delta H^{\circ}_{c} = -802 \text{ kJ/mol}$$

Artinya pada pembakaran 1 mol gas metana melepaskan kalor sebesar 802 kJ/mol (tanda negative pada ΔH menunjukkan bahwa reaksi menghasilkan atau melepaskan panas ke lingkungan).

2. Reaksi pembakaran 1 gram karbon (Ar C = 12) dibebaskan kalor sebesar 85 kJ. Maka ΔH°_{c} nya adalah:

Mol karbon =
$$\frac{massa}{Ar} = \frac{1}{12} = 0$$
, **083** mol

Dari perhitungan di atas diketahui bahwa pada pembakaran 0,083 mol (1 g karbon) dilepaskan kalor

sebesar 85 kJ.

Artinya jika 1 mol karbon yang dibakar, maka akan dilepaskan kalor sebesar = $\frac{1 \, mol}{0.083 \, mol} \, x \, 85 \, kJ = 1024 \, kJ$

Jadi persamaan termokimia pada pembakaran 1 mol karbon adalah:

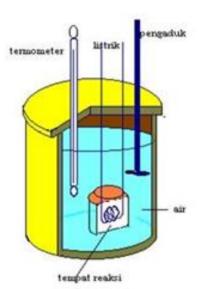
$$C(s) + O_2(g) \rightarrow CO_2(g) \Delta H^{\circ}_c = -1024 \text{ kJ/mol}$$

Tanda negatif pada ΔH menunjukkan bahwa reaksi melepaskan kalor ke lingkungan atau reaksi eksoterm.

d. Perubahan entalpi netralisasi standar (ΔH°_n)

Menyatakan perubahan entalpi pada pembentukan 1 mol air dari reaksi penetralan asam oleh basa atau sebaliknya pada keadaan standar.

Contoh:


$$HCN_{(aq)} + KOH_{(aq)} \rightarrow KCN_{(aq)} + H_2O_{(l)} \Delta H^{\circ}_n = -12 \text{ kJ/mol}$$
 koefisien 1 berarti 1 mol H₂O

Artinya, pada pembentukan 1 mol air yang disebabkan oleh reaksi netralisasi 1 mol HCN oleh 1 mol KOH melepaskan kalor sebesar 12 kJ/mol.

3. Penentuan kalor menggunakan kalorimeter

Kalor reaksi dapat ditentukan melalui percobaan dengan kalorimeter. Kalorimeter adalah alat yang digunakan untuk mengukur jumlah kalor yang dipindahkan ke atau dari suatu benda (Aisyah *et al.*, 2022). Kalorimeter ada 2 jenis, yaitu Kalorimeter bom dan kalorimeter *coffee-cup*.

Kalorimeter bom merupakan kalorimeter yang khusus digunakan untuk menentukan kalor dari reaksi-reaksi Kalorimeter pembakaran. terdiri dari sebuah bom, tempat berlangsungnya reaksi terbuat dari stainless steel dan diisi dengan gas oksigen pada tekanan tinggi. Kemudian, pada bagian luarnya terdapat sejumlah air yang dibatasi dengan wadah Gambar kedap panas. yang

Gambar 5. Kalorimeter BomSumber: kibrispdr.org

kalorimeter bom dapat dilihat pada Gambar 5. Adapun reaksi yang terjadi di dalam bom akan menghasilkan kalor, yang kemudian akan diserap oleh air dan bom itu sendiri. Karena pada kalorimeter bom ini digunakan wadah yang kedap panas, maka tidak ada kalor yang terbuang, dan kalor reaksi yang dilepaskan dapat dihitung menggunakan rumus:

$$\mathbf{q}_{\mathrm{reaksi}} = -(\mathbf{q}_{\mathrm{air}} + \mathbf{q}_{\mathrm{bom}})$$

kalor yang diserap oleh air dapat dihitung menggunakan rumus:

 $q_{air} = m \times c \times \Delta T$

dimana:

m = massa air dalam kalorimeter

c = kalor jenis air dalam kalorimeter

 $\Delta T = perubahan suhu$

Sedangkan kalor yang diserap oleh bom dapat dihitung menggunakan rumus:

 $\mathbf{Q_{bom}} = \mathbf{C} \times \Delta \mathbf{T}$

dimana:

C =kapasitas kalor bom

 $\Delta T = perubahan suhu$

Berbeda dengan kalorimeter bom, kalorimeter *coffee-cup* (sederhana) hanya dibuat dari cangkir yang diasumsikan tidak berkontribusi pada penyerapan panas keseluruhan, karena dinding cangkir diperlakukan sebagai dinding adiabatik sempurna dengan q = 0 (isolator). Karenanya kalor reaksi yang ada merupakan kalor yang diserap atau dilepaskan oleh larutan saja (Aisyah *et al.*, 2022). Secara matematis, kalor reaksi dapat dihitung menggunakan rumus:

 $q_{reaksi} = - q_{larutan}$

kalor larutan dapat dihitung menggunakan rumus:

 $q_{larutan} = m x c x \Delta T$

dimana:

m = massa larutan

c = kalor jenis larutan

 $\Delta T = perubahan suhu$

Pada kalorimeter sederhana ini, reaksi berlangsung pada tekanan tetap, sehingga nilai kalor sama dengan perubahan entalpinya.

 $q_p = \Delta H$

Contoh:

Sebanyak 100 ml larutan HCl 0,5 M direaksikan dengan 100 ml larutan NaOH 0,5 M dalam kalorimeter gelas gabus. Suhu awal kedua larutan sama, yaitu 24,5°C. Setelah larutan dicampurkan, suhu naik menjadi 28°C. Jika kalor jenis dan massa jenis larutan (ρ) dianggap sama dengan air yaitu 4,18 J/g°C dan 1 g/ml. Tentukan perubahan entalpi (ΔH) reaksi berikut.

 $HC1 + NaOH \rightarrow NaC1 + H_2O$

Permasalahan di atas dapat diselesaikan dengan cara berikut.

➤ Karena kalorimeter yang digunakan jenis coffe-cup, maka

kalor yang diserap atau dilepas oleh larutan dihitung menggunakan rumus: $\mathbf{q}_{reaksi} = -\mathbf{q}_{larutan} = -(\mathbf{m} \times \mathbf{c} \times \Delta \mathbf{T})$

➤ Kalor yang dilepas atau diserap oleh kalorimeter *coffe-cup* berlangsung pada tekanan tetap, sehingga:

$$q_p = \Delta H = -(m \times c \times \Delta T)$$

Dari rumus yang sudah dituliskan di atas, maka data yang diperlukan untuk menghitung ΔH adalah: massa larutan (m), kalor jenis larutan (c) dan perubahan suhu (ΔT). Adapun nilai masing-masing besaran di atas yaitu:

$$c = 4,18 \text{ J/g}^{\circ}\text{C}$$

 $\Delta T = T2 - T1$
 $= 28^{\circ}\text{C} - 24,5^{\circ}\text{C}$
 $= 3,5^{\circ}\text{C}$

m setelah bercampur = m larutan HCl + m larutan NaOH m setelah bercampur = $(\rho \ x \ V)$ HCl + $(\rho \ x \ V)$ NaOH m setelah bercampur = $(1 \ g/ml \ x \ 100 \ ml)$ + $(1 \ g/ml \ x \ 100 \ ml)$ m setelah bercampur = $200 \ g$

jadi massa total larutan adalah 200 g

 \triangleright Hitung perubahan entalpinya (\triangle H) menggunakan rumus:

$$\Delta H = - (m \times c \times \Delta T)$$

$$\Delta H = -(200 \text{ g x } 4.18 \text{ J/g}^{\circ}\text{C x } 3.5^{\circ}\text{C}) = -2.926 \text{ J}$$

Nilai ΔH di atas merupakan ΔH netralisasi 100 ml HCl 0,5 dengan 100 ml NaOH 0,5 M (atau 0,05 mol masing-masing reaktan) untuk membentuk 0,05 mol air.

Adapun ΔH yang dimintakan pada soal merupakan ΔH netralisasi standar (pembentukan 1 mol air). Sehingga, nilai

 ΔH perlu dihitung kembali.

$$\Delta H = \frac{1 \, mol}{0.05 \, mol} \, x - 2926 \, J = 58.520 \, \text{J/mol}.$$

Tanda negatif pada harga ΔH tersebut menunjukkan bahwa reaksi netralisasi di atas termasuk dalam reaksi eksoterm (sistem melepas kalor). Jadi ΔH^o n-nya= 58.520 J/mol.

C. Aktivitas Pembelajaran

Lakukan kegiatan berikut bersama teman kelompokmu, dan jawablah pertanyaan yang diberikan secara singkat dan jelas.

Coba Kimia Nilai Kalor Biobriket Tanaman purun

a. Tujuan kegiatan

Siswa dapat menentukan nilai kalor biobriket tanaman purun

b. Alat dan bahan yang digunakan

Biobriket tanaman purun Termometer

Panci Neraca

Air 500 ml Tungku/kaleng

c. Prosedur kerja

- 1. Siapkan panci berisi 500 ml air
- 2. Ukur suhu air mula-mula
- 3. Timbang sejumlah biobriket tanaman purun yang hendak digunakan
- 4. Didihkan 500 ml air tersebut menggunakan biobriket yang telah diketahui massanya
- 5. Ukur suhu air saat mendidih

- 6. Timbang massa biobriket yang tersisa
- 7. Hitung nilai kalor biobriket tanaman purun yang dihasilkan
- 8. Hitung nilai kalor biobriket tanaman purun untuk tiap gramnya

d. Hasil pengamatan

Catat hasil pengamatanmu secara jujur pada Tabel 5 berikut.

Tabel 5. Penentuan Nilai Kalor Biobriket Tanaman Purun

Variabel yang diamati	Hasil
	pengamatan
suhu air mula-mula	
$(\mathbf{T_1})$	
Suhu air saat mendidih	
$(\mathbf{T_2})$	
Massa biobriket awal	
(\mathbf{m}_1)	
Massa biobriket akhir	
(\mathbf{m}_2)	

e. Analisis data

Jawablah sejumlah pertanyaan berikut!

 Berdasarkan pemahamanmu, sebutkan sistem dan lingkungan pada percobaan penentuan nilai kalor biobriket tanaman purun di atas!

2.	Prediksikan jenis reaksi (eksoterm/endoterm) pada percobaan
	di atas! Berikan alasan atas prediksimu tersebut!
3.	Berdasarkan hasil prediksimu, apa tanda ΔH (+/-) dari reaksi
	di atas?
4.	Berapa massa air dalam panci pada percobaan di atas?
••	2014pu minosu um umum punor punu putosoumi um umo
_	
5.	Setelah melakukan percobaan di atas, berapa perubahan suhu
	air sebelum dan sesudah mendidih ($\Delta T = T_2 - T_1$)?
6.	Berapa massa biobriket yang terpakai untuk mendidihkan 1
	liter air $(\Delta m = m_1 - m_2)$?

7.	Berapa kalor pembakaran biobriket tanaman purun di atas (q
	= $m_{air} \times c_{air} \times \Delta T_{air}$? (c $air = 4.2 \text{ J/g}^{\circ}\text{C}$)
8.	Hitung kalor pembakaran untuk 1 gram biobriket!
9.	Jika biobriket tanaman purun tersebut hanya mengandung
	unsur karbon (C), maka tuliskanlah reaksi pembakaran
	biobriket tersebut!
	biobliket tersebut:
10	. Dengan demikian, berapa nilai ΔH dari reaksi tersebut?
10.	
11.	. Tuliskan persamaan termokimianya (ΔH°c)!

f.	Kesimpulan
	Tulislah kesimpulan yang kamu peroleh!

D. Latihan Soal

Kerjakan soal berikut secara mandiri dan jujur. Berikan tanda silang pada jawaban yang tepat!

1. Perhatikan persamaan reaksi berikut.

$$2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)} + 136,6 \text{ kkal.}$$

Pada pembakaran 1 mol CO terjadi perubahan entalpi sebesar...

a. +136,6 kkal

d. -136,6 kkal

b. -68,3 kkal

e. 34,15 kkal

c. +68,3 kkal

2. Jika diketahui ΔH pembakaran beberapa bahan bakar adalah sebagai berikut.

Methanol (CH₃OH)

 $\Delta H = -638 \text{ kJ/mol}$

Propana (C₃H₈)

 $\Delta H = -2217 \text{ kJ/mol}$

Isooktana (C₈H₁₈)

 $\Delta H = -5460 \text{ kJ/mol}$

Etuna (C_2H_2)

 $\Delta H = -1299 \text{ kJ/mol}$

Ethanol (C₂H₅OH)

 $\Delta H = -1364 \text{ kJ/mol}$

Bahan bakar yang menghasilkan kalor paling besar untuk setiap gramnya adalah ...

a. Methanol

d. Etuna

b. Propana

e. Etanol

c. Isooktana

3. Kalor yang diperlukan untuk memanaskan 100 gram air dari 25°C sampai 100°C adalah... (kalor jenis air 4,18 J/g°C)

- a. 31,350 J
- d. 10,450 J
- b. 31350 J
- e. 10450 J
- c. 31350 kJ
- 4. Diantara persamaan termokimia di bawah ini yang merupakan perubahan entalpi penguraian adalah...

a.
$$Mg(OH)_2(s) \rightarrow Mg(s) + O_2(g) + H_2(g) \Delta H^{\circ} = +925 \text{ kJ}$$

b.
$$C_6H_{12}O_6(s) + 6O_2 \rightarrow 6CO_2 + 6H_2O \Delta H^{\circ} = -2.820 \text{ kJ}$$

c.
$$CaO(s) + CO_2(g) \rightarrow CaCO_3(s) \Delta H^{\circ} = +1.207 \text{ kJ}$$

d.
$$Ca(s) + C(s) + O_2(g) \rightarrow CaCO_3(s) \Delta H^{\circ} = -1.207 \text{ kJ}$$

e.
$$2CO_2(g) + 3H_2O(l) \rightarrow C_2H_5OH(l) + 3O_2(g) \Delta H^{\circ}$$
 = +1.380 kJ

5. Jika diketahui:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

$$\Delta H^{\circ} = -92 \text{ kJ}$$

Perubahan entalpi pada penguraian 1 mol gas NH₃ menjadi unsur-unsurnya adalah...

a. -92 kJ

d. +184 kJ

b. -46 kJ

e. +92 kJ

- c. +46 kJ
- 6. Pada suatu percobaan 3 L air dipanaskan sehingga suhu air naik dari 25°C menjadi 72°C. jika diketahui massa jenis air adalah 1 g/mL dan kalor jenis air adalah 4,2 J/g K, maka ΔH reaksi pemanasan tersebut adalah...
 - a. 592,2 kJ
- d. 5,922 kJ
- b. 5922 kJ
- e. 59220 kJ
- c. 59,22 kJ
- 7. Diketahui:

$$H_2O(1) \rightarrow H_2O(g)$$
 $\Delta H^{\circ} = +40 \text{ kJ/mol}$

Berapakah kalor yang diperlukan untuk penguapan 4,5 g H_2O ?

a. +8 kJ

d. 11 kJ

b. +9 kJ

- e. 12 kJ
- c. +10 kJ
- 8. Diketahui:

$$C(g) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\circ}_f = -393.5 \text{ kJ/mol}$

Kalor yang dilepaskan pada reaksi pembentukan CO₂ sebanyak 22 gram adalah...

- a. -196,75 kJ
- d. +197,75 kJ
- b. +196,75 kJ
- e. -198,75 kJ
- c. -197,75 kJ
- 9. Dalam suatu reaksi kimia dibebaskan 8,4 kJ kalor. Jika kalor ini digunakan untuk memanaskan 100 cm³ air, maka kenaikan suhunya adalah... (kalor jenis air = $4.2 \text{ J/g}^{\circ}\text{C}$)
 - a. 4,2°C

d. 30°C

b. 20°C

e. 16,8°C

- c. 8,4°C
- 10. Perhatikan persamaan reaksi termokimia di bawah ini!
 - 1) $\frac{1}{2} N_2(g) + \frac{1}{2} O_2(g) \rightarrow NO(g)$
- $\Delta H = +kJ/mol$
- 2) $NO_2(g) \rightarrow \frac{1}{2} N_2(g) + O_2(g)$
- $\Delta H = -kJ/mol$
- 3) $CO_2(g) \rightarrow C(s) + O_2(g)$
- $\Delta H = +kJ/mol$
- 4) $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ $\Delta H = -kJ/mol$
- 5) Na $(s) + \frac{1}{2} \operatorname{Cl}_2(g) \rightarrow \operatorname{NaCl}$
- $\Delta H = -kJ/mol$

Pasangan persamaan reaksi yang merupakan ΔH°_f, ΔH°_d,

 ΔH°_{c} adalah...

- a. 3, 4, dan 5
- b. 2, 4, dan 5
- c. 1, 3, dan 5
- d. 1, 2, dan 4
- e. 1, 2, dan 3

E. Kunci Jawaban

Cocokkan jawaban hasil latihanmu dengan kunci jawaban berikut!

- 1. b
- 2. b
- 3. b
- 4. a
- 5. c
- 6. a
- 7. c
- 8. a
- 9. b
- 10. d

Laporkan nilai yang kamu peroleh kepada gurumu. Jika nilaimu di bawah 70, pelajari kembali materi tersebut.

F. Penilaian Diri

Baca dengan seksama dan teliti bagian berikut. Berikan penilaian terhadap dirimu sendiri apa adanya dengan memberi tanda centang ($\sqrt{}$) pada kolom "ya" atau "tidak" berdasarkan pernyataan yang sedang dinilai. Penilaian ini akan sangat berarti bagimu, agar kamu dan gurumu dapat mengetahui bagian yang belum difahami dengan baik.

No	Pernyataan	Ya	Tidak
1	Saya dapat memaparkan definisi perubahan		
	entalpi pembakaran standar (ΔH°C)		
2	Saya dapat memaparkan definisi perubahan		
	entalpi penguraian standar (ΔH°D)		
3	Saya dapat memaparkan definisi perubahan		
	entalpi netralisasi standar (ΔH°n)		
4	Saya dapat menghitung ΔH pembentukan 2		
	mol H ₂ O(l) berdasarkan persamaan berikut.		
	$H_2(g) + 1/2O_2(g) \rightarrow H_2O(1)$ $\Delta H = -285,85$		
	kJ/mol		
5	Saya dapat menentukan perubahan entalpi		
	dari reaksi pembakaran 2 mol C(s) berikut.		
	$C(s) + O_2(g) \rightarrow CO_2(g) \Delta H^{\circ}_f = -393,5$		
	kJ/mol		
6	Saya dapat menentukan ΔH°D dari NH ₃ (g)		

	berdasarkan berikut.	
	$2NH_3(g) \rightarrow N_2(g) + 3H_2(g)$ $\Delta H = +92 \text{ kJ}$	
7	Saya dapat menentukan bahwa persamaan termokimia berikut $\frac{1}{2} N_2(g) + \frac{1}{2} O_2(g) \rightarrow NO(g)$ $\Delta H = +kJ/mol$ merupakan contoh dari $\Delta H^o f$	
8	Saya dapat menentukan ΔH reaksi pemanasan 2 L air sehingga suhu air naik menjadi 50°C (massa jenis air adalah 1 g/mL dan kalor jenis air adalah 4,2 J/g K)	
9	Saya dapat menginternalisasi nilai-nilai religi yang terkandung dalam materi yang sudah saya pelajari	
10	Setelah mempelajari materi ini, setidaknya saya semakin yakin tentang ke-Agung-an dan ke-Esa-an Allah SWT.	

Jika terdapat jawaban "tidak" pada butir pernyataan di atas, berusahalah untuk mengulang bagian tersebut. Jika usaha yang kamu lakukan belum berhasil, mintalah bantuan kepada teman ataupun gurumu untuk menjelaskannya!

G. Rubrik Penilaian Diri

No	Rubrik Penilaian
1	Ya = jika dapat menjelaskan bahwa ΔH°_{c} adalah perubahan
	entalpi pada pembakaran sempurna 1 mol senyawa pada
	kondisi standar
	Tidak = jika tidak dapat memberikan penjelasan seperti di
	atas
2	$Ya = jika$ dapat menjelaskan bahwa ΔH°_{d} adalah perubahan
	entalpi pada penguraian 1 mol senyawa menjadi unsur-
	unsurnya pada keadaan standar
	Tidak = jika tidak dapat memberikan penjelasan seperti di
	atas
3	$Ya = jika$ dapat menjelaskan bahwa ΔH°_n adalah perubahan
	entalpi pada pembentukan 1 mol air dari reaksi penetralan
	asam oleh basa atau sebaliknya pada keadaan standar.
	Tidak = jika tidak dapat memberikan penjelasan seperti di
	atas
4	Ya = jika dapat membuktikan bahwa ΔH pembentukan 2
	mol H ₂ O(l) sebesar -571,7 kj
	Tidak = jika tidak dapat membuktikan bahwa ΔH
	pembentukan 2 mol H ₂ O(l) sebesar -571,7 kJ
5	Ya = jika dapat membuktikan bahwa ΔH pembakaran 2 mol
	C(s) sebesar -787 kJ
	Tidak = jika tidak dapat membuktikan bahwa ΔH

	pembakaran 2 mol C(s) sebesar -787 kJ
6	$Ya = jika dapat membuktikan bahwa \Delta H^{o}D dari NH_3(g)$
	adalah sebesar +46 kJ/mol
	Tidak = jika tidak dapat membuktikan bahwa ΔH°D dari
	NH ₃ (g) adalah sebesar +46 kJ/mol
7	Ya = jika dapat menjelaskan bahwa reaksi tersebut
	termasuk ΔH^{o} f karena menyatakan perubahan entalpi
	pembentukan 1 mol NO(g) pada keadaan standar
	Tidak = jika tidak dapat menjelaskan bahwa reaksi tersebut
	termasuk ΔH°f karena menyatakan perubahan entalpi
	pembentukan 1 mol NO(g) pada keadaan standar
8	Ya = jika dapat membuktikan bahwa ΔH reaksi pemanasan
	2 L air sehingga suhu air naik menjadi 50°C adalah sebesar
	420.000 J
	Tidak = jika tidak dapat membuktikan bahwa ΔH reaksi
	pemanasan 2 L air sehingga suhu air naik menjadi 50°C
	adalah sebesar 420.000 J
9	Ya = jika dapat menginternalisasi nilai-nilai religius yang
	ada pada materi yang sudah dipelajari, misalnya:
	1. Tidak ada yang diciptakan dengan sia-sia oleh Allah,
	termasuk tanaman purun. Selain dapat digunakan
	sebagai bahan kerajinan, purun juga dapat digunakan
	sebagai biobriket yang berfungsi sebagai bahan bakar
	alternative.
	2. Allah telah menundukkan segala sesuatu yang ada di

	langit dan di bumi untuk kepentingan manusia,
	termasuk matahari beserta energinya untuk menyinari
	tanaman agar dapat berfotosintesis, sehingga bisa
	digunakan manusia sebagai bahan makanan.
	6. Manusia patut bersyukur atas nikmat energi dan
	berbagai tumbuhan yang tumbuh subur di Indonesia.
	7. Manusia sebagai khalifah di muka bumi ini harus
	menjaga kelestarian lingkungan sebagai wujud syukur
	kepada Allah.
	Tidak = jika tidak dapat menginternalisasi nilai-nilai
	religius yang ada pada materi yang sudah saya pelajari
10	Ya = jika semakin yakin dengan ke-Agung-an dan ke-Esa-
	an Allah
	Tidak = jika tidak meyakini ke-Agung-an dan ke-Esa-an
	Allah
1	

KEGIATAN PEMBELAJARAN 3

Sains tanpa agama adalah cacat, agama tanpa sains adalah buta

~ Albert Einstein ~

A. Tujuan Pembelajaran

Setelah melakukan kegiatan pembelajaran 3, diharapkan siswa dapat:

- 1. Menjelaskan aturan manipulasi persamaan termokimia
- 2. Menerapkan aturan manipulasi persamaan termokimia
- 3. Menentukan ΔH reaksi berdasarkan hukum Hess
- 4. Menentukan ΔH reaksi berdasarkan data energi ikatan
- 5. Menentukan ΔH reaksi berdasarkan data ΔH pembentukan standar (ΔH°_{f})
- Melakukan percobaan untuk menentukan ΔH pembakaran suatu bahan bakar
- 7. Menghitung ΔH pembakaran suatu bahan bakar dan membandingkan ΔH dengan hasil perhitungan menggunakan data energi ikatan, hukum Hess dan data ΔH pembentukan standar (ΔH°_{f})
- 8. Mempresentasikan hasil percobaan secara berkelompok
- 9. Membuat laporan hasil percobaan secara mandiri
- Meningkatkan rasa keimanan dan ketaqwaan terhadap Allah SWT
- 11. Mensyukuri segala nikmat yang diberikan Allah SWT
- 12. Menjaga lingkungan sekitar

B. Uraian Materi

Brainstorming

Gambar 6. Tumbuhan yang Mendapat Sinar Matahari Sumber: kumparan.com

Tahukah kamu bahwa tumbuhan tidak dapat berfotosintesis jika tidak ada cahaya matahari?

Bagaimana reaksi fotosintesisnya?

Perubahan entalpi (ΔH) suatu reaksi dapat ditentukan dengan berbagai cara, salah satunya sudah kalian pelajari pada kegiatan pembelajaran 2 yaitu menggunakan kalorimeter. Adapun 3 cara lainnya yaitu menggunakan hukum Hess, data energi ikatan dan data entalpi pembentukan standar (ΔH°_{f}). Setiap cara penentuan ΔH tersebut memiliki kekhasannya masing-masing. Agar lebih

jelas, mari kita simak materi pembelajaran berikut!

Energi Fotosintesis pada Tumbuhan

Purun adalah salah satu tumbuhan yang melakukan fotosintesis agar dapat membentuk daun, batang, serta akar. Cahaya matahari disebut sebagai faktor lingkungan yang menjadi penentu laju fotosintesis. Hal ini terungkap dari hasil penelitian yang telah dilakukan oleh Setyorini dkk (2009), bahwa tumbuhan purun yang mendapat sinar matahari lebih banyak akan memiliki ukuran yang lebih tinggi dan jumlah individu yang lebih banyak. Hal ini disinyalir karena ketersediaan cahaya dapat mendukung tumbuhan purun untuk menghasilkan senyawa organic yang diperlukan untuk pertumbuhannya. Namun tahukah kamu berapa banyak energi matahari yang diserap oleh tumbuhan untuk melakukan fotosintesis tersebut?

Cahaya matahari memiliki sifat polikromatik yang apabila dibiaskan akan menghasilkan warna-warna monokromatik. Warna-warna monokromatik inilah yang akan diserap oleh klorofil dan digunakan dalam proses fotosintesis. Adapun jumlah energi yang digunakan tumbuhan untuk berfotosintesis ternyata hanya 0,5-2% dari jumlah energi sinar matahari yang tersedia (Suyatman, 2020).

Dalam ilmu kimia, energi yang terlibat dalam suatu reaksi kimia dapat diperkirakan melalui 4 cara, salah satunya menggunakan data entalpi pembentukan standar (ΔH°f) dari setiap reaktan dan produk yang terlibat dalam reaksi kimia tersebut. Jika reaksi fotosintesis yang terjadi demikian:

$$6CO_2(g) + 6H_2O(l) \rightarrow C_6H_{12}O_6(s) + 6O_2(g)$$

Dengan ΔH°_{f} $CO_{2}(g) = -394$ kJ/mol; ΔH°_{f} $H_{2}O(l) = -286$ kJ/mol; ΔH°_{f} $O_{2}(g) = 0$ kJ/mol; ΔH°_{f} $C_{6}H_{12}O_{6}(s) = 1260$ kJ/mol, maka energi yang diperlukan tumbuhan untuk melakukan fotosintesis diperkirakan sebesar +2.820 kJ/mol. Adapun rumus yang digunakan untuk mendapatkan nilai tersebut adalah:

$$\Delta \mathbf{H}_{\text{reaksi}} = \Delta \mathbf{H}^{\circ}_{\text{f produk}} - \Delta \mathbf{H}^{\circ}_{\text{f reaktan}}$$

Atom Penyusun Alam Semesta

Manusia adalah makhluk individu sekaligus makhluk social. Sebagai makhluk individu, ia memiliki karakter yang khas, berbeda dengan manusia lainnya. Sedangkan sebagai makhluk sosial, manusia membutuhkan orang lain dalam rangka saling memberi dan mengambil manfaat. Contohnya, orang yang sibuk dan berkecukupan dapat memperkerjakan orang lain

untuk membantunya menjaga rumah serta anak-anaknya, sehingga orang yang diberi pekerjaan pun merasa terbantu perekonomiannya.

Allah SWT telah menciptakan atom seperti manusia, yang memiliki sifat khasnya masing-masing, sehingga dapat saling berikatan untuk mencapai kestabilan. Agar atom-atom tersebut dapat berikatan diperlukan sejumlah energi, yang dikenal dengan istilah energi ikatan. Energi ikatan menyatakan kekuatan ikatan antar atom. Contoh, atom C berelektron valensi 4 dapat berikatan dengan 4 atom H, dimana besar masing-masing energi ikatan C-H tersebut adalah 415 kJ/mol. Contoh lain ada pada molekul C₃H₈. Pada molekul tersebut terdapat 2 buah ikatan C-C dan 8 buah ikatan C-H, yang masing-masing memiliki energi ikatan sebesar 348 kJ/mol (C-C) dan 415 kJ/mol (C-H).

Adanya kemampuan setiap atom untuk saling berikatan, memungkinkan terbentuknya berbagai zat kimia yang ada di alam semesta. Contohnya, jika 2 atom O saling berikatan akan terbentuk gas oksigen (O₂). Gas ini merupakan salah satu komponen penyusun udara, dan diperlukan oleh manusia serta hewan untuk bernafas. Contoh lain, jika 2 atom H berikatan dengan 1 atom O membentuk molekul air (H₂O). Air adalah salah satu sumber kehidupan yang sangat penting dan tidak tergantikan bagi seluruh makhluk hidup di bumi. Melalui penjelasan ini,

kiranya kita dapat memahami bahwa atom adalah bagian terkecil penyusun alam semesta, yang saling berikatan membentuk molekul-molekul yang selanjutnya menghasilkan berbagai benda seperti batu, kayu, air, udara, tanah hingga tubuh manusia sekalipun. MasyaAllah.

1. Penentuan ΔH menggunakan hukum Hess

Tidak semua perubahan entalpi pada suatu reaksi dapat ditentukan melalui percobaan. Karenanya hukum Hess dapat menjadi solusi untuk menentukan harga ΔH suatu reaksi. Salah satu contoh reaksi kimia yang ΔH-nya sulit ditentukan adalah pembentukan gas karbon monoksida (CO). Gas CO murni sangat sulit diperoleh, karena selalu diiringi dengan pembentukan gas karbon dioksida (CO₂). Oleh sebab itu, penentuan ΔH dari pembentukan gas CO ini dapat dilakukan dengan cara memanipulasi, kemudian menjumlahkan beberapa reaksi yang ΔH-nya sudah diketahui.

Perhatikan contoh berikut.

Diketahui reaksi:

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -393,5 \text{ kJ/mol } ...(1)$

$$CO(g) + 1/2O_2(g) \rightarrow CO_2(g) \Delta H = -283 \text{ kJ/mol } ...(2)$$

Persamaan reaksi yang ingin diketahui ΔH-nya adalah:

$$C(s) + 1/2O_2(g) \rightarrow CO(g)$$
 $\Delta H = ? ...(3)$

Cara menjawab:

Aturan manipulasi persamaan termokimia

- \circ Jika persamaan termokimia dikalikan dengan suatu faktor, maka ΔH -nya juga dikalikan dengan factor yang sama.
- Jika persamaan termokimia dibagi dengan suatu faktor, maka ΔH-nya juga dibagi dengan factor yang sama.
- Jika arah persamaan termokimia diubah, maka tanda
 ΔH-nya juga diubah (+ atau -).
- ➤ Pada reaksi (1), posisi dan koefisien atom C sudah sesuai dengan reaksi (3). Sehingga reaksi (1) tidak perlu dimanipulasi.

$$C(s) + O_2(g) \rightarrow CO_2(g) \quad \Delta H = \text{-}393,5 \text{ kJ/mol}$$

Pada reaksi (2), posisi CO ada di bagian reaktan, sedangkan pada reaksi (3) posisi CO ada di bagian produk. Oleh sebab itu, arah reaksi (2) beserta tanda ΔH-nya perlu diubah. Persamaan termokimia (2) menjadi:

$$CO_2(g) \rightarrow CO(g) + 1/2O_2(g)$$
 $\Delta H = +283 \text{ kJ/mol}$

> Menjumlahkan kedua persamaan termokimia di atas

$$C(s) + Q_2(g) \rightarrow CO_2(g)$$

$$\Delta H = -393,5 \text{ kJ/mol}$$

$$CO_2(g) \rightarrow CO(g) + 1/2O_2(g)$$

$$\Delta H = +283 \text{ kJ/mol}$$

$$C(s) + 1/2O_2(g) \rightarrow CO(g)$$

$$\Delta H = -110,5 \text{ kJ/mol}$$

> Jadi ΔH pembentukan gas CO adalah -110,5 kJ/mol.

2. Penentuan ΔH menggunakan data perubahan entalpi pembentukan standar (ΔH°_{f})

Tahukah kamu bahwa penentuan ΔH menggunakan data $\Delta H^{\circ}_{\rm f}$ ini berkaitan erat dengan aturan manipulasi persamaan termokimia yang terdapat pada hukum Hess? Karenanya pemahaman mengenai aturan manipulasi tersebut sangatlah penting. Perhatikan contoh soal di bawah ini.

Tentukan ΔH untuk reaksi: $H_2O(1) \rightarrow H_2O(g)$

Jika diketahui 2 persamaan termokimia berikut ini.

$$H_2(g) + 1/2O_2(g) \rightarrow H_2O(1)$$
 $\Delta H_f^{\circ} = -283 \text{ kJ/mol }...(1)$

$$H_2(g) + 1/2O_2(g) \longrightarrow H_2O(g) \quad \Delta H^{\circ}{}_f = -242 \text{ kJ/mol } \dots (2)$$

Permasalahan di atas dapat dijawab menggunakan cara berikut:

- Kedua persamaan termokimia di atas menyatakan perubahan entalpi pembentukan standar (ΔH°_f) dari H₂O berwujud gas dan H₂O berwujud cair. Kedua persamaan tersebut dapat kita gunakan untuk meramalkan ΔH reaksi yang ada pada contoh soal.
- Langkah pertama, perhatikan reaktan pada contoh soal yaitu

 $H_2O(l)$. $H_2O(l)$ terdapat pada persamaan termokimia (1), tetapi posisinya ada di produk. Oleh sebab itu, persamaan termokimia (1) harus dimanipulasi (diubah arahnya, sehingga harga ΔH nya memiliki tanda berlawanan dari ΔH°_f) seperti berikut.

$$H_2O(l) \rightarrow H_2(g) + 1/2O_2(g) \Delta H = -\Delta H^{\circ}_f H_2O(l) = +283$$
 kJ/mol

➤ Langkah kedua, perhatikan produk pada contoh soal yaitu H₂O(g). H₂O(g) terdapat pada persamaan termokimia (2), dan posisinya sudah sesuai dengan yang dikehendaki dalam soal yaitu di produk. Karenanya, persamaan termokimia (2) tidak perlu dimanipulasi.

$$H_2(g) + 1/2O_2(g) \rightarrow H_2O(g) \qquad \Delta H = \Delta H^\circ_f \ H_2O(g) = -242$$
 kJ/mol

> Jumlahkanlah kedua persamaan termokimia di atas untuk mendapatkan ΔH reaksi yang diminta pada contoh soal.

$$H_2O(1) \rightarrow H_2(g) + 1/2O(g)$$
 $\Delta H = +283 \text{ kJ/mol}$
 $H_2(g) + 1/2O(g) \rightarrow H_2O(g)$ $\Delta H = -242 \text{ kJ/mol} +$
 $H_2O(1) \rightarrow H_2O(g)$ $\Delta H = +41 \text{ kJ/mol}$

 \blacktriangleright Dari penyelesaian contoh soal di atas, dapat disimpulkan bahwa ΔH reaksi dapat ditentukan jika ΔH°_{f} masing-masing reaktan dan produk diketahui, dan harganya merupakan hasil pengurangan antara ΔH°_{f} produk dan ΔH°_{f} reaktan. Data ΔH°_{f} dari beberapa unsur dan senyawa dapat dilihat pada Tabel 6 berikut.

Δ Hreaksi = Δ H $^{\circ}_{f}$ produk - Δ H $^{\circ}_{f}$ reaktan

Tabel 6. Data ΔH°_{f} Beberapa Unsur dan Senyawa

$\begin{array}{c cccc} & & & & & & \\ & Al(s) & 0 & H_2O(l) & \\ & C(s,grafit) & 0 & H_2O(g) & \\ & Ba(s) & 0 & CH_{4(g)} & \\ & Ca(s) & 0 & C_2H_5OH_{(l)} & \\ & Cl_{2(g)} & 0 & CaSO_{4(s)} & \\ \end{array}$	\H° _f (kJ/mol)
$\begin{array}{cccc} C(s,grafit) & 0 & H_2O(g) \\ Ba(s) & 0 & CH_{4(g)} \\ Ca(s) & 0 & C_2H_5OH_{(l)} \\ Cl_{2(g)} & 0 & CaSO_{4(s)} \\ \end{array}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-286
$\begin{array}{ccc} Ca(s) & 0 & C_2H_5OH_{(l)} \\ Cl_{2(g)} & 0 & CaSO_{4(s)} \end{array}$	-242
$Cl_{2(g)}$ 0 $CaSO_{4(s)}$	-74,9
	-278
	-1433
$H_{2(g)}$ 0 $CuSO_{4(s)}$	-771,4
$CO_2(g)$ -394 $CaCO_{3(s)}$	-1207

(Brady, 1999)

3. Penentuan ΔH menggunakan data energi ikatan

Penentuan ΔH reaksi menggunakan data energi ikatan hanya berlaku untuk reaksi kimia yang melibatkan senyawa berwujud gas. Energi ikatan menyatakan besarnya kekuatan suatu ikatan tertentu dalam molekul. Data energi ikatan dapat dilihat pada Tabel 7 di bawah ini.

Tabel 7. Data Energi Ikatan Rata-rata

Zat	Energi	Zat	Energi
	Ikatan		Ikatan
	(kJ/mol)		(kJ/mol)
C – H	415	Cl - Cl	243
H – O	463	C - N	292
H-N	391	C = N	619
H - F	563	$C \equiv N$	879
H-Cl	432	C - C	348
H – Br	366	C = C	607
H - I	299	$C \equiv C$	833
C – O	356	C - Cl	338

(Brady, 1999)

Lalu, bagaimana energi ikatan dapat digunakan untuk menghitung ΔH suatu reaksi? Menurut Dalton, reaksi kimia merupakan penataan ulang atom-atom, yaitu terjadi pemutusan ikatan pada reaktan atau pereaksi dan pembentukan kembali ikatan pada produk. Adapun pemutusan ikatan pada reaktan memerlukan energi, sedangkan pembentukan ikatan baru pada produk melepaskan energi. Secara matematis, penentuan ΔH reaksi menggunakan energi ikatan dirumuskan sebagai berikut.

 $\Delta H = \sum E.pemutusan ikatan - \sum E.pembentukan ikatan$

Perhatikan contoh berikut!

Tentukan ΔH dari reaksi berikut.

$$CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g)$$

Gunakan data energi ikatan pada Tabel 7.

Jawab:

Jumlah energi pemutusan ikatan pada reaktan:

$$4 \text{ ikatan C} - \text{H} : 4 \text{ x} \ 415 \text{ kJ/mol} = 1660 \text{ kJ/mol}$$

Jumlah energi pembentukan ikatan pada produk:

$$3 \text{ ikatan C} - \text{H} : 3 \text{ x} \text{ 415 kJ/mol} = 1245 \text{ kJ/mol}$$

1 ikatan
$$C - Cl : 1 \times 338 \text{ kJ/mol} = 338 \text{ kJ/mol}$$

1 ikatan H – Cl : 1 x 432 kJ/mol =
$$\frac{432 \text{ kJ/mol}}{2015 \text{ kJ/mol}}$$
 +

$$\Delta H = \sum E.$$
pemutusan ikatan - $\sum E.$ pembentukan ikatan = $1903 - 2015 = -112$ kJ/mol

Jadi ΔH dari reaksi di atas adalah -112 kJ/mol.

C. Aktivitas Pembelajaran

Lakukan kegiatan berikut bersama teman kelompokmu, dan jawablah pertanyaan yang diberikan secara singkat dan jelas.

Coba Kimia Perubahan Entalpi Pembakaran Lilin

a. Tujuan kegiatan

Siswa dapat menentukan perubahan entalpi standar dari pembakaran lilin

b. Alat dan bahan yang digunakan

Termometer Gelas ukur

Neraca digital Air 200 mL

Kaki tiga Korek

Kawat kasa Lilim

Gelas kimia

c. Prosedur kerja

- 1. Masukkan 200 mL air ke dalam gelas kimia
- 2. Ukur suhunya dan catatlah sebagai T1.
- 3. Timbang massa lilin mula-mula (m1)
- 4. Nyalakan lilin dengan korek dan panaskan air di atasnya hingga suhunya mencapai 50°C (T2).

5. Timbang massa lilin yang tersisa setelah dingin (m2)

d. Hasil pengamatan

Catat hasil pengamatanmu secara jujur pada Tabel 8 berikut.

Tabel 8. Penentuan Nilai Entalpi Pembakaran Lilin

Variabel yang diamati	Hasil
	pengamatan
suhu air mula-mula	
(T ₁)	
Suhu air setelah	
ditambahkan NH4Cl	
(T_2)	
Massa lilin mula-mula	
(m1)	
Massa lilin yang tersisa	
(m2)	

e.	Analisis data
	Jawablah sejumlah pertanyaan berikut!
1.	Berapa massa air dari percobaan yang telah kamu lakukan,
	jika massa jenisnya adalah 1 g/ml?

2.	Berapa perubahan suhu pada percobaan telah kamu lakukan?
3.	Hitung perubahan entalpi pembakaran lilin yang digunakan untuk memanaskan sejumlah air di atas? (kalor jenis air = 4,2 $J/g^{\circ}C$)
4.	Hitung perubahan entalpi pembakaran 1 gram lilin?
5.	Tentukan rumus molekul dan hitung Mr dari lilin?
6.	Hitung perubahan entalpi pembakaran 1 mol lilin berdasarkan hasil percobaan?
7.	Hitung perubahan entalpi pembakaran 1 mol lilin berdasarkan data $\Delta H^{o}f?$

8.	
	perhitungan di atas!
f.	Kesimpulan
f.	Kesimpulan Tulislah kesimpulan yang kamu peroleh!
f.	
f.	
f.	
f.	

D. Latihan Soal

Kerjakan soal berikut secara mandiri dan jujur. Berikan tanda silang pada jawaban yang tepat!

1. Perhatikan reaksi berikut.

$$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(l)$$

Bila $\Delta H_{f}^{\circ} C_{2}H_{2}(g) = +226.9 \text{ kJ}$

$$\Delta H_{\rm f}^{\circ} CO_2(g) = -393.3 \text{ kJ}$$

$$\Delta H_{f}^{\circ} H_{2}O(1) = -285,8 \text{ kJ}$$

Maka besarnya ΔH reaksi di atas adalah ...

2. Jika diketahui reaksi berikut.

$$H_2O(1) \rightarrow H_2(g) + 1/2O_2(g)$$
 $\Delta H = +68,3 \text{ kkal}$

$$\Delta H = +68,3 \text{ kkal}$$

$$H_2(g) + 1/2O_2(g) \rightarrow H_2O(g)$$
 $\Delta H = -57.8 \text{ kkal}$

$$\Delta H = -57.8 \text{ kkal}$$

$$H_2O(1) \rightarrow H_2O(s)$$

$$\Delta H = -1,4 \text{ kkal}$$

Besarnya ΔH H₂O berwujud es menjadi gas adalah ...

3. Jika diketahui data energi ikatan sebagai berikut.

$$H - H = 104,2 \text{ kkal/mol}$$

$$Cl - Cl = 57,8 \text{ kkal/mol}$$

$$H - Cl = 103,1 \text{ kkal/mol}$$

Besarnya kalor yang diperlukan untuk menguraikan 146 g HCl menjadi unsur-unsurnya adalah...

- a. 22,1 kkal
- d. 265,1 kkal
- b. 44,2 kkal
- e. 825,8 kkal
- c. 88,4 kkal
- 4. Jika diketahui persamaan reaksi sebagai berikut.

$$2NO(g) + O_2(g) \rightarrow N_2O_4(g)$$

$$\Delta H = a kJ$$

$$NO(g) + 1/2O_2(g) \rightarrow NO_2(g)$$

$$\Delta H = b kJ$$

Besarnya ΔH reaksi untuk:

 $2NO_2(g) \rightarrow N_2O_4(g)$ adalah...

- a. (a + b) kJ
- d. (a 2b) kJ
- b. (a + 2b) kJ e. (2a + b) kJ
- c. (2b a) kJ
- 5. Jika $\Delta H^{\circ}_{f} Fe_{3}O_{4}(aq) = +266 \text{ kkal}; \Delta H^{\circ}_{f} H_{2}O(1) = +58 \text{ kkal}$ Maka ΔH reaksi: $3Fe(s) + 4H_2O(1) \rightarrow Fe_3O_4(aq) + 4H_2(g)$ adalah...
 - a. 34 kkal
- d. 498 kkal
- b. 208 kkal
- e. tidak ada yang benar
- c. 324 kkal
- 6. Jika diketahui reaksi berikut.

$$C(s) + 1/2O_2(g) \rightarrow CO(g)$$
 $\Delta H = -a \text{ kkal}$

$$\Delta H = -a \, kkal$$

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

$$\Delta H = -b \text{ kkal}$$

$$C(s) + O_2(g) \rightarrow CO_2(g)$$

$$\Delta H = -c \text{ kkal}$$

Hubungan a, b, dan c menurut hukum Hess dapat diungkapkan dengan persamaan...

a.
$$a = -\frac{1}{2}b + c$$

$$d. 2a = c - b$$

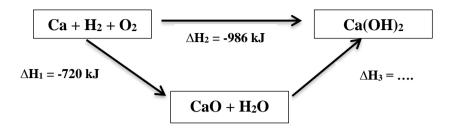
b.
$$c = 2a + \frac{1}{2}bc$$

e.
$$\frac{1}{2}b = 2a + c$$

c.
$$c = 2a + b$$

7. Diketahui:

$$\Delta H_{f}^{\circ} C_{2}H_{2}(g) = +226,7 \text{ kJ/mol}$$


$$\Delta H^{\circ}_{f} CO_{2}(g) = -393,5 \text{ kJ/mol}$$

$$\Delta H_f^{\circ} H_2O(g) = -241.8 \text{ kJ/mol}$$

Jika 8,96 L C₂H₂ dibakar pada keadaan STP sesuai reaksi:

 $2C_2H_2(g)+5O_2(g)\to 4CO_2(g)+2H_2O(g),$ maka kalor yang dilepaskan adalah...

- a. -502,2 kJ
- d. -1.506.6 kJ
- b. -753,3 kJ
- e. -2.511 kJ
- c. -1.004,4 kJ
- 8. Diketahui entalpi pembentukan $H_2O(g) = -242$ kJ/mol, energi ikatan H H = 436 kJ/mol dan energi ikatan dalam molekul oksigen (O = O) = 495 kJ/mol. Energi ikatan O H dalam air adalah...
 - a. 1173 kJ/mol
- d. 586,5 kJ/mol
- b. 925,5 kJ/mol
- e. 462,75 kJ/mol
- c. 804,5 kJ/mol
- 9. Entalpi pembakaran asetilena C_2H_2 adalah -1300 kJ/mol. Entalpi pembentukan asetilena adalah... ($\Delta H^{\circ}_f CO_2(g) = -393 \text{ kJ/mol}$; $\Delta H^{\circ}_f H_2O(g) = -285 \text{ kJ/mol}$)
 - a. -225 kJ/mol
- d. +450 kJ
- b. +225 kJ/mol
- e. -620 kJ
- c. -450 kJ/mol
- 10. Perhatikan siklus di bawah ini.

Nilai ΔH_3 adalah ...

a. -50 kJ

d. 55 kJ

b. -44 kJ

- e. 1706 kJ
- c. -266 kJ

E. Kunci Jawaban

Cocokkan jawaban hasil latihanmu dengan kunci jawaban berikut!

- 1. d
- 2. e
- 3. b
- 4. d
- 5. a
- 6. a
- 7. a
- 8. e
- 9. b
- 10. c

Laporkan nilai yang kamu peroleh kepada gurumu. Jika nilaimu di bawah 70, pelajari kembali materi tersebut.

F. Penilaian Diri

Baca dengan seksama dan teliti bagian berikut. Berikan penilaian terhadap dirimu sendiri apa adanya dengan memberi tanda centang ($\sqrt{}$) pada kolom "ya" atau "tidak" berdasarkan pernyataan yang sedang dinilai. Penilaian ini akan sangat berarti bagimu, agar kamu dan gurumu dapat mengetahui bagian yang belum difahami dengan baik.

No	Pernyataan	Ya	Tidak
1	Saya mengetahui rumus yang digunakan		
	untuk menghitung ΔH suatu reaksi		
	menggunakan data ΔH°_{f}		
2	Saya dapat menentukan ΔH° _f H ₂ O jika		
	diketahui ΔH°_{f} CO_{2} = y kJ/mol dan ΔH°_{f}		
	$C_2H_2=z\ kJ/mol.$ Persamaan termokimianya		
	adalah:		
	$C_2H_2(g) + 5/2O_2(g) \rightarrow 2CO_2(g) + H_2O(l)$		
	$\Delta H = x \text{ kJ/mol}$		
3	Saya mengetahui rumus yang digunakan		
	untuk menghitung ΔH suatu reaksi		
	menggunakan data energi ikatan		
4	Saya dapat menentukan besarnya energi		
	ikatan $N-H$, jika diketahui energi ikatan		
	N=N=163 kJ/mold an $H-H=436 kJ/mol$.		

Persamaan termokimianya adalah:

$$^{1}\!\!/_{2}$$
 N₂(g) + 3/2H₂(g) \rightarrow NH₃(g) Δ H = -438 kJ/mol

- 5 Saya mengerti jika koefisien persamaan termokimia dikalikan dengan suatu factor, maka nilai ΔH -nya juga harus diperlakukan sama
- 6 Saya mengerti jika koefisien persamaan termokimia dibagi dengan suatu factor, maka nilai ΔH-nya juga harus diperlakukan sama
- 7 Saya mengerti jika arah persamaan termokimia diubah, maka tanda ΔH-nya juga ikut diubah
- 8 Saya dapat menentukan ΔH reaksi berikut $2C(s) + O_2(g) \rightarrow 2CO(g)$

Jika diketahui:

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H = -393,5$

kJ/mol...(1)

$$CO(g) + 1/2O2(g) \rightarrow CO2(g) \Delta H = -283$$

kJ/mol ...(2)

- 9 Saya dapat menginternalisasi nilai-nilai religi yang terkandung dalam materi yang sudah saya pelajari
- 10 Setelah mempelajari materi ini, setidaknya saya semakin yakin tentang ke-Agung-an dan

ke-Esa-an Allah SWT.

Jika terdapat jawaban "tidak" pada butir pernyataan di atas, berusahalah untuk mengulang bagian tersebut. Jika usaha yang kamu lakukan belum berhasil, mintalah bantuan kepada teman ataupun gurumu untuk menjelaskannya!

G. Rubrik Penilaian Diri

No	Rubrik Penilaian
1	Ya = jika mengetahui bahwa suatu reaksi dapat dihitung
	menggunakan data ΔH°_{f} menggunakan rumus:
	$\Delta H \text{ reaksi} = \sum \Delta H^{\circ}_{f \text{ produk}} - \sum \Delta H^{\circ}_{f \text{ reaktan}}$
	Tidak = jika tidak mengetahui bahwa suatu reaksi dapat
	dihitung menggunakan data ΔH°_{f} menggunakan rumus:
	$\Delta H \ reaksi = \sum \Delta H^{\circ}_{f \ produk} - \sum \Delta H^{\circ}_{f \ reaktan}$
2	$Ya = jika dapat membuktikan harga \Delta H^{\circ}_{f} H_{2}O = (x-2y+z)$
	kJ/mol
	Tidak = jika tidak dapat membuktikan harga $\Delta H^{\circ}_{f} H_{2}O =$
	(x-2y+z) kJ/mol
3	Ya = jika mengetahui bahwa ΔH suatu reaksi dapat dihitung
	menggunakan data energi ikatan menggunakan rumus:
	$\Delta H \; reaksi = \sum_{ ext{energi pemutusan ikatan}} \sum_{ ext{energi pembentukan ikatan}}$
	Tidak = jika tidak mengetahui bahwa ΔH suatu reaksi dapat
	dihitung menggunakan data energi ikatan menggunakan
	rumus: $\Delta H \text{ reaksi} = \sum_{\text{energi pemutusan ikatan}} - \sum_{\text{energi pembentukan ikatan}}$
4	Ya = jika dapat membuktikan bahwa energi ikatan N – H
	sebesar 391 kJ
	Tidak = jika tidak dapat membuktikan bahwa energi ikatan
	N – H sebesar 391 kJ
5	Ya = jika mengerti
	Tidak = jika tidak mengerti

6	Ya = jika mengerti
	Tidak = jika tidak mengerti
7	Ya = jika mengerti
	Tidak = jika tidak mengerti
8	Ya = jika dapat membuktikan harga ΔH reaksi tersebut
	sebesar 221 kJ
	Tidak = jika tidak dapat membuktikan harga ΔH reaksi
	tersebut sebesar 221 kJ
9	Ya = jika dapat menginternalisasi nilai-nilai religius yang
	ada pada materi yang sudah dipelajari, misalnya:
	1. Allah telah menciptakan atom seperti manusia yang
	memiliki sifat khasnya masing-masing, sehingga dapat
	saling berikatan untuk mencapai kestabilan
	2. Kita wajib bersyukur kepada Allah dengan adanya
	kemampuan pada setiap atom untuk saling berikatan
	membentuk berbagai zat kimia yang ada di alam
	semesta, seperti air, udara, tanah, dsb.
	3. Kita harus menjaga lingkungan sekitar sebagai wujud
	syukur kepada Allah
	Tidak = jika tidak dapat menginternalisasi nilai-nilai
	religius yang ada pada materi yang sudah saya pelajari
10	Ya = jika semakin yakin dengan Ke-Agung-an dan Ke-Esa-
	an Allah
	Tidak = jika tidak meyakini Ke-Agung-an dan Ke-Esa-an
	Allah

EVALUASI

Kerjakan soal berikut secara mandiri, jujur dan teliti. Berilah tanda silang (X) pada jawaban yang paling tepat!

- 1. Ciri-ciri reaksi eksoterm adalah...
 - A. Lingkungan menyerap kalor dari sistem
 - B. Sistem menyerap kalor dari lingkungan
 - C. Terjadi perpindahan kalor dari lingkungan ke sistem
 - D. Sistem menerima kalor dari lingkungan
 - E. Lingkungan melepaskan kalor ke sistem
- Reaksi dalam kehidupan sehari-hari berikut ini termasuk ke dalam reaksi endoterm adalah...
 - A. Respirasi
- D. Pembakaran
- B. Fotosintesis
- E. kapur tohor masuk dalam air
- C. Perkaratan besi
- 3. Sebuah kristal KNO₃ dimasukkan ke dalam tabung reaksi, kemudian ditetesi dengan air. Pada tabung reaksi terasa dingin. Reaksi ini dapat digolongkan ke dalam reaksi...
 - A. Eksoterm, energi berpindah dari sistem ke lingkungan
 - B. Eksoterm, energi berpindah dari lingkungan ke sistem
 - C. Endoterm, energi berpindah dari sistem ke lingkungan
 - D. Endoterm, energi berpindah dari lingkungan ke sistem
 - E. Endoterm, energi terisolasi
- 4. Sebanyak 2 mol gas hydrogen direaksikan dengan 1 mol gas oksigen sehingga membentuk uap air yang memerlukan kalor

sebesar 484 kJ. Persamaan termokimianya adalah...

A.
$$H_2(g) + 1/2O_2(g) \rightarrow H_2O(g)$$
 $\Delta H = +484 \text{ kJ}$

B.
$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$
 $\Delta H = +484 \text{ kJ}$

C.
$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g)$$
 $\Delta H = -484 \text{ kJ}$

$$D. \ 2H_2O(g) \rightarrow 2H_2(g) + O_2(g) \quad \Delta H = \text{-}484 \text{ kJ}$$

E.
$$H_2O(g) \rightarrow H_2(g) + 1/2O_2(g)$$
 $\Delta H = +484 \text{ kJ}$

 Pada pembakaran 1 mol gas metana pada suhu 298 K dan tekanan 1 atm dibebaskan kalor sebesar 802 kJ. Persamaan termokimianya adalah...

A.
$$2CH_4(g) + 4O_2(g) \rightarrow 2CO_2(g) + 4H_2O(l)$$
 $\Delta H = -802 \text{ kJ}$

B.
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(1)$$
 $\Delta H = +802 \text{ kJ}$

C.
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(1)$$
 $\Delta H = -802 \text{ kJ}$

D.
$$CO_2(g) + 2H_2O(l) \rightarrow CH_4(g) + 2O_2(g)$$
 $\Delta H = +802 \text{ kJ}$

E.
$$C(s) + 2H_2(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$
 $\Delta H = +802 \text{ kJ}$

6. Diketahui persamaan termokimia berikut:

$$C_6H_6(g) \to 6C(s) + 3H_2(g)$$
 $\Delta H = -49 \text{ kJ}$

Pernyataan benar dari reaksi di atas adalah...

- A. Pembentukan 1 mol C_6H_6 memerlukan kalor sebesar 8,16 kJ
- B. Pembentukan 1 mol C₆H₆ memerlukan kalor sebesar 49 kJ
- C. Pembentukan 1 mol C₆H₆ membebaskan kalor sebesar 49

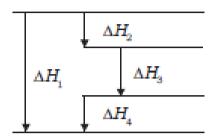
kJ

- D. Penguraian 1 mol C₆H₆ memerlukan kalor sebesar 49 kJ
- E. Penguraian 1 mol C₆H₆ membebaskan kalor sebesar 49 kJ
- 7. Persamaan termokimia berikut ini merupakan perubahan entalpi pembentukan standar (ΔH°_{f}), kecuali...

A.
$$C(s) + 2Cl_2(g) \rightarrow CCl_4(l)$$
 $\Delta H^{\circ}_f = -134 \text{ kJ}$

B.
$$Ca(s) + Cl_2(g) \rightarrow CaCl_2(s)$$
 $\Delta H^{\circ}_{f} = -795.8 \text{ kJ}$

C.
$$Fe_2(s) + 3/2O_2(g) \rightarrow Fe_2O_3(s) \Delta H^{\circ}_f = -822,2 \text{ kJ}$$


D.
$$Na(s) + 1/2H_2(g) + C(s) + 3/2O_2(g) \rightarrow NaHCO_3(s) \Delta H^{\circ}_f$$

= -947,7 kJ

E.
$$Zn(s) + 1/2O_2(g) \rightarrow ZnO(s)$$
 $\Delta H^{\circ}_f = -348 \text{ kJ}$

- 8. Pada pelarutan 5 gram Kristal NaOH (Mr NaOH = 40) dalam 50 mL air terjadi kenaikan suhu dari 26°C menjadi 34°C. Jika kalor jenis larutan dianggap sama dengan kalor jenis air yaitu 4,2 J/gK, dan kalor wadah diabaikan, maka entalpi pelarutan NaOH adalah...
 - A. -1.344 J
- D. -7.392 J
- B. -1.848 J
- E. -1.478 J
- C. -3.696 J
- Diketahui entalpi pembentukan standar etanol (C₂H₅OH),
 CO₂, dan H₂O berturut-turut adalah -278 kJ/mol, -394 kJ/mol,
 dan -286 kJ/mol. Pada pembakaran 92 gram etanol (Ar C = 12, H = 1, O = 16) dihasilkan kalor sebesar...
 - A. 541 kJ

- D. 2.164 kJ
- B. 1.082 kJ
- E. 2.736 kJ
- C. 1.623 kJ

10. Perhatikan diagram entalpi berikut.

Berdasarkan diagram di atas, harga ΔH_2 adalah...

A.
$$\Delta H_1 - \Delta H_3 - \Delta H_4$$

B.
$$\Delta H_1 + \Delta H_3 - \Delta H_4$$

C.
$$\Delta H_1 - \Delta H_3 - \Delta H_4$$

D.
$$\Delta H_1 - \Delta H_3 + \Delta H_4$$

E.
$$\Delta H_1 + \Delta H_{3+} \Delta H_4$$

11. Diketahui:

$$CS_2(g) + 3O_2(g) \rightarrow CO_2(g) + 2SO_2(g) \Delta H = -1110 \text{ kJ}$$

$$CO_2(g) \rightarrow C(s) + O_2(g)$$

$$\Delta H = +394 \text{ kJ}$$

$$SO_2(g) \rightarrow S(s) + O_2(g)$$

$$\Delta H = +\ 297\ kJ$$

Maka perubahan entalpi pembentukan CS2 adalah...

12. Diketahui energi ikatan rata-rata (kJ/mol) dari:

$$C = C = 607$$

$$C - C = 343$$

$$C - H = 410$$

$$O - H = 460$$

$$C - O = 351$$

Perubahan entalpi dari reaksi:

$$CH_2 = CH_2 + H_2O \rightarrow CH_3 - CH_2 - OH$$

Adalah...

- A. -111 kJ/mol
- D. +37 kJ/mol
- B. +111 kJ/mol
- E. -74 kJ/mol
- C. -37 kJ/mol
- 13. Jika diketahui energi ikatan N≡N = 163 kJ/mol dan H–H = 436 kJ/mol, maka energi ikatan rata-rata N-H pada reaksi:

$$1/2N_2(g) + 3/2H_2(g) \rightarrow NH_3(g)$$
 $\Delta H = -438 \text{ kJ/mol adalah...}$

- A. 1.173,5 kJ
- D. 195,5 kJ
- B. 735,5 kJ
- E. 130 kJ
- C. 391 kJ
- 14. Diketahui:

$$\Delta H_f^{\circ} H_2O(g) = -242 \text{ kJ/mol}$$

$$\Delta H^{\circ}_{f}CO_{2}(g) = -394 \text{ kJ/mol}$$

$$\Delta H^{\circ}_{f}C_{2}H_{2}(g) = +52 \text{ kJ/mol}$$

Jika 52 gram C_2H_2 dibakar sempurna sesuai dengan persamaan berikut:

$$2C_2H_2(g) + 5O_2(g) \rightarrow 4CO_2(g) + 2H_2O(g)$$

Akan dihasilkan kalor sebesar...

- A. 391,2 kJ
- D. 2164 kJ
- B. 432,8 kJ
- E. 4328 kJ
- C. 1082 kJ
- 15. Diketahui persamaan termokimia berikut:

$$2NO(g) + O_2(g) \rightarrow N_2O_4(g)$$
 $\Delta H = a kJ$

$$NO(g) + 1/2O_2(g) \rightarrow NO_2(g)$$
 $\Delta H = b kJ$

Besarnya AH untuk reaksi

 $2NO_2(g) \rightarrow N_2O_4(g)$ adalah...

A.
$$(a + b) kJ$$

B.
$$(a + 2b) kJ$$

$$E. (2a + b) kJ$$

C.
$$(-a + 2b) kJ$$

GLOSARIUM

Energi: kapasitas untuk melakukan kerja (w) atau menghasilkan panas (kalor =q).

Energi dalam (U): Energi yang dipindahkan dan mempengaruhi jumlah total energi sistem.

Energi panas: energi yang berhubungan dengan gerakan acak dari partikel baik berupa atom, ion, atau molekul di dalam suatu materi karena adanya pengaruh suhu.

Entalpi: jumlah total energi kalor yang terkandung dalam suatu materi.

Kalor: perpindahan energi panas, atau termal dari dua benda yang berbeda suhunya.

Lingkungan: hal-hal yang diluar sistem yang membatasi sistem dan dapat mempengaruhi sistem.

Persamaan termokimia: terdiri atas persamaan reaksi kimia setara dan wujud masing-masing reaktan maupun produk serta perubahan entalpi yang menyertai reaksi tersebut.

Perubahan entalpi: kalor yang diterima atau dilepas oleh suatu reaksi.

Reaksi Eksoterm: reaksi yang melepas kalor dari sistem ke lingkungan, ditandai dengan kenaikan suhu sistem.

Reaksi Endoterm: reaksi yang menyerap kalor dari lingkungan ke sistem, ditandai dengan penurunan suhu sistem.

Sistem: segala sesuatu yang menjadi pusat perhatian dalam

mempelajari perubahan energi.

Termokimia: ilmu kimia yang mempelajari hubungan antara kalor, panas dengan reaksi kimia atau proses-proses yang berhubungan dengan reaksi kimia.

RANGKUMAN

Sumber energi utama di bumi adalah matahari. Tidak ada manusia yang dapat menciptakan energi. Manusia hanya mampu mengubah energi dari satu bentuk ke bentuk lainnya. Ada banyak contoh konversi energi yang terjadi di alam, baik itu terjadi akibat campur tangan manusia ataupun terjadi secara alami. Contoh konversi energi yang terjadi secara alami adalah reaksi fotosintesis pada tanaman. Pada hakikatnya, reaksi fotosintesis ini adalah proses pengolahan makanan oleh tanaman yang disimpan dalam bentuk glukosa. Agar terjadi reaksi fotosintesis, maka tanaman tersebut harus menyerap energi dari matahari sebagai sumber energi utama di muka bumi. Dengan cara demikian, terjadilah konversi energi matahari menjadi energi kimia yang tersimpan dalam tanaman. Adapun contoh konversi energi akibat campur tangan manusia adalah energi panas yang dihasilkan pada saat biobriket (bahan bakar) dibakar. Energi kimia yang terkandung dalam bahan bakar tersebut akan berubah menjadi energi panas (kalor), kemudian energi panas ini dapat digunakan untuk memasak air atau makanan.

Kalor adalah salah satu bentuk energi yang memiliki banyak manfaat dalam kehidupan sehari-hari. Ilmu kimia yang mempelajari tentang kalor disebut dengan termokimia. Dalam termokimia, dijumpai istilah sistem dan lingkungan. Sistem adalah bagian dari alam semesta yang sedang menjadi fokus pengamatan., sedangkan lingkungan adalah bagian lain dari alam semesta yang berinteraksi dengan sistem. Ditinjau dari interaksi antara sistem dan lingkungan, maka sistem dibagi menjadi 3 yaitu sistem terbuka, sistem tertutup dan sistem terisolasi.

Berdasarkan kalor yang menyertainya, reaksi kimia dibagi menjadi dua, yaitu reaksi eksoterm dan endoterm. Reaksi eksoterm adalah reaksi kimia yang melepaskan kalor ke lingkungan, sehingga suhu dan energi di lingkungan menjadi naik, sedangkan suhu dan energi sistem menurun. Karenanya reaksi eksoterm ini memiliki perubahan entalpi berharga negatif. Berbeda dengan reaksi eksoterm, reaksi endoterm adalah reaksi kimia yang menyerap atau menerima kalor dari lingkungan. Reaksi ini menyebabkan energi dan suhu sistem bertambah, sedangkan suhu dan energi di lingkungan menurun. Karenanya reaksi endoterm ini memiliki perubahan entalpi berharga positif.

Reaksi kimia umumnya terjadi pada tekanan tetap. Kalor yang diukur pada tekanan tetap disebut dengan perubahan entalpi (ΔH). ΔH suatu reaksi kimia dapat diukur dengan 4 cara yaitu menggunakan kalorimeter, hukum Hess, data perubahan entalpi standar $(\Delta H^{\circ}f)$, dan data pembentukan energi ikatan. Penggunaan keempat cara di atas memiliki kekhasannya masingmasing. Jika kalor reaksi yang ingin diketahui melibatkan reaksi pelarutan, netralisasi, dan pembakaran suatu bahan bakar dapat digunakan cara kalorimetri. Jika kalor reaksi yang ingin diketahui melibatkan zat-zat berfase gas dapat digunakan data energi

ikatan. Sementara itu, munculnya hukum Hess sebagai salah satu cara penentuan harga ΔH disebabkan karena tidak semua perubahan entalpi dari suatu reaksi kimia dapat ditentukan melalui percobaan.

DAFTAR PUSTAKA

- Aisyah, N., Harijanto., A. & Nuraini, L. (2022). Rancang Bangun Alat Praktikum Kalorimeter Coffe-Cup Pengukur Kalor Jenis Berbantuan Arduino Uno. *Jurnal Pembelajaran Fisika*, 11(1), 41-46.
- Asikin, S., & Thamrin, M. (2012). Manfaat Purun Tikus (*Eleocharis dulcis*) pada Ekosistem Sawah Rawa. *Jurnal Litbang Pertanian*, 31(1), 35-42.
- Brady, J.E. (1999). *Kimia Universitas Asas & Struktur Jilid II*. Alih Bahasa: Sukmariah Maun, Kamianti Anas dan Tilda S Sally. Tangerang: Binarupa Aksara.
- Fathaddin, M. T., Sitaresmi, R., Ridaliani, O., Widiatni, H., Kusumawardhani, D., & Omar, E. M. A. (2021). Sosialisasi Pembuatan Briket Tanaman untuk Bahan Bakar selama Masa Pandemi Covid 19 di Lingkungan Komunitas Masyarakat Cibinong. *Akal: Jurnal Abdimas dan Kearifan Lokal*, 2(2), 22-28.
- Fauziah, N. (2009). *Kimia 2: SMA dan MA Kelas XI IPA*. Jakarta: Pusat Perbukuan, Departemen Pendidikan Nasional.
- Harnanto, A. & Ruminten. (2009). Kimia 2: untuk SMA/MA kelas XI. Jakarta: Pusat Perbukuan, Departemen Pendidikan Nasional.
- Karmila., Rumape, O., & Mohammad, E. (2018). Pembuatan

- Biobriket dari Batang Tumbuhan Gulma Siam (*Chromolaena odorata L.*) sebagai Bahan Bakar Alternatif. *Jurnal Entropi*, 13(1), 89-94.
- Kurniati, E. & Suprihatin. (2009). Kinetika Pembakaran Briket Arang Enceng Gondok. *Jurnal Penelitian Ilmu Teknik*, 9(1), 70-77.
- Silvianingsih, Y.A., Christy, E.O., Nursiah. & Santoso, M. (2022). Perajin Sedotan Purun di Sungai Sebangau: Produk Ramah Lingkungan Berbahan Baku Lokal. *Jurnal Hutan Tropika*, *17*(2), 295-301.
- Subhan. (2013). Kimia Dasar 2. Makassar: Dua Satu Press
- Supardi, K.I. 2017. *Pembelajaran Kimia Terintegrasi Karakter Religius*. Semarang: Unnes Press.
- Susanti, P.D., Wahyuningtyas, R. S., & Ardhana, A. (2015). Pemanfaatan Gulma Lahan Gambut sebagai Bahan Baku Bio-Briket. *Jurnal Penelitian Hasil Hutan*, *33*(1), 35-46.
- Utami, B., Saputro, A.N.C., Mahardiani, L., Yamtinah, S., & Mulyani, B. (2009). *Kimia untuk SMA dan MA Kelas XI Program Ilmu Alam*. Jakarta: Pusat Perbukuan, Departemen Pendidikan Nasional.

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

No. Dokumen No. Revisi Hal. 1 dari 2

RENCANA PEMBELAJARAN SEMESTER

Mata Kuliah : Kimia Sekolah 2	Semester : 3							
Program Studi : Pendidikan Kimia	Dosen Pengampu/Penanggungjaw	ab:						
Mata Kuliah Prasyarat	Kimia Sekolah 1							
Capaian Pembelajaran Lulusan	P1: Menguasai konsep teoretis pemisahan, analisis, sintesis dan KU1: Mampu menerapkan pemik implementasi ilmu pengetahuan dengan bidang keahliannya; KK1: Mampu merencanakan dar karakteristik bahan kajian dan pesbelajar dan media pembelajaran be	KKI: Mampu merencanakan dan melaksanakan pembelajaran kimia di sekolah secara terbimbing sesuai dengan karakteristik bahan kajian dan peserta didik melalui pendekatan saintifik dengan memanfaatkan berbagai sumber belajar dan media pembelajaran berbasis IPTEKS, dan potensi lingkungan setempat, sesuai standar isi, proses dan penilaian; sehingga peserta didik memiliki keterampilan proses sains, berpikir kritis, kreatif dan penyelesaikan						
Capaian Pembelajaran Matakuliah Mahasiswa mampu menganalisis konsep-konsep yang terdapat pada materi pembelajaran kimia SMA kelas XI berdasarkan keterkaitan keadaan makroskopik, mikroskopik dan simbolik dari suatu spesi kimia secara kritis dan cermat.								
Deskripsi Matakuliah Pada matakuliah ini mahasiswa mengkaji secara mendalam tentang materi kimia SMA kelas XI sesuai kurikulum yang								

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

No. Dokumen No. Revisi Hal. 1 dari 2

	berlaku. Materi pembelajaran kimia tersebut meliputi hirokarbon, minyak bumi, termokimia, laju reaksi,kesetimbangan kimia,larutan asam basa, hidrolisis garam,larutan penyangga, titrasi asam basa, Ksp dan sistem koloid.	
Referensi	 Referensi Utama: Purba, M. 2017. Kimia untuk SMA/MA Kelas XI. Jakarta: Erlangga Simanjuntak, H & Parulian, H.G. 2020. Buku Ajar Kimia. Bandung: Widina Bhakti Persada. Sudarmo, U & Mitayani, N. 2017. Kimia Untuk SMA/MA Kelas XI Kurikulum 2013 Yang Disempurnakan Peminatan Matematika dan Ilmu Pengetahuan Alam. Jakarta: Erlangga. Referensi Pendukung: Apriani, H & Rizkiana, F. 2018. Pengaruh Smash Book Berbasis Inkuiri Terbimbing Terhadap Motivasi Belajar Siswa Pada Materi Larutan Penyangga. Quantum: Jurnal Inovasi Pendidikan Sains, 9(2), 84-91. Arnelli & Astuti, Y. 2019. Kimia Koloid dan Permukaan. Yogyakarta: Deepublish Effendy. 2015. A-Level Chemistry For Senior High School Volume 1B. Malang: Bayumedia Publishing Effendy. 2015. A-Level Chemistry For Senior High School Volume 2A. Malang: Bayumedia Publishing Effendy. 2015. A-Level Chemistry For Senior High School Volume 2B. Malang: Bayumedia Publishing 	

Pert. ke-	Sub-CPMK	Bahan Kajian		Indikator	Metode Pembelajaran	Pengalaman Belajar	Penilaian (Jenis dan Kriteria)	Bobot	Waktu	Referensi
1-2	Mahasiswa	Kontrak	•	Mahasiswa dapat	Interactive	 Melalui modul 	<u>Jenis</u> :	11%	KB: 2 x 50'	3,7
	mampu	Perkuliahan		menentukan nama	Direct	yang disusun oleh	 Penilaian 			
	menganalisis	 Hidrokarbon 		senyawa	Instruction	mahasiswa presenter	penyusunan		PT: 2 x 60'	
	konsep			hidrokarbon	 Presentation 	dan presentasi	modul			
	hidrokarbon		•	Mahasiswa dapat	based on guided	berbasis inkuiri	pembelajaran		BM: 2 x 60'	
	berdasarkan unsur			menentukan isomer	inquiry	terbimbing,	hidrokarbon			

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

	makroskopik , mikroskopik dan simbolik serta peranannya dalam kehidupan berdasarkan contoh sehari-hari dari kearifan lokal/nasional secara efektif melalui pembelajaran tematik		•	senyawa hidrokarbon Mahasiswa dapat menjelaskan reaksi senyawa hidrokarbon Mahasiswa dapat menjelaskan sifat fisik dan kimia senyawa hidrokarbon Mahasiswa dapat menjelaskan peranan senyawa hidrokarbon dalam kehidupan sehari- hari	• Class Discusion	mahasiswa mampu menganalisis konsep tentang hidrokarbon	(kognitif) Penilaian tertulis (kognitif) Penilaian presentasi (psikomotorik) Penilaian sikap (afektif) Kriteria: Kesesuaian dengan indikator rubrik penilaian modul, capaian sub-cpmk, presentasi dan sikap			
3	Mahasiswa mampu menganalisis konsep minyak bumi berdasarkan contoh sehari-hari dari sumber daya	Minyak Bumi	2.	Mahasiswa dapat menjelaskan tentang komponen minyak bumi Mahasiswa dapat menganalisis prinsip cara	 Team Project Based Learning Presentation based on guided inquiry Class Discussion 	• Melalui modul yang disusun oleh mahasiswa presenter dan presentasi berbasis inkuiri terbimbing, mahasiswa mampu	Jenis: • Penilaian penyusunan modul pembelajaran Minyak Bumi (kognitif)	4%	KB: 2 x 50' PT: 2 x 60' BM: 2 x 60'	3,7

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

	alam kearifan lokal/nasional secara efektif		pemisahan fraksi minyak bumi		menganalisis konsep tentang Minyak Bumi	Penilaian tertulis (kognitif) Penilaian presentasi (psikomotorik) Penilaian sikap (afektif) Kriteria: Kesesuaian dengan indikator rubrik penilaian modul, capaian sub-cpmk, presentasi dan sikap			
4-5	Mahasiswa mampu mengidentifikasi berbagai sistem dalam termokimia serta berbagai perubahan entalpi disertai cara	Termokimia	Mahasiswa dapat menjelaskan berbagai macam sistem Mahasiswa dapat menjelaskan eksoterm dan endoterm	 Team Project Based Learning Presentation based on guided inquiry Class Discusion 	Melalui modul yang disusun oleh mahasiswa presenter dan presentasi berbasis inkuiri terbimbing, mahasiswa mampu menganalisis konsep	Jenis: Penilaian penyusunan modul pembelajaran Termokimia (kognitif) Penilaian	16%	KB: 2 x 50' PT: 2 x 60' BM: 2 x 60'	4,6,7,8

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

	penentuannya		3. Mahasiswa dapat		tentang Termokimia	tertulis			
			menjelaskan		_	(kognitif)			
			berbagai macam			• Penilaian			
			ΔΗ			presentasi			
			4. Mahasiswa dapat			(psikomotorik)			
			menentukan ΔH			 Penilaian sikap 			
			dengan kalorimeter			(afektif)			
			metode kalorimetri						
			5. Mahasiswa dapat			Kriteria:			
			menenetukan ΔH			Kesesuaian			
			berdasarkan hukum			dengan indikator			
			Hess			rubrik penilaian			
			6. Mahasiswa dapat			modul, capaian			
			menentukan ΔH			sub-cpmk,			
			berdasarkan data			presentasi dan			
			energi ikatan 7. Mahasiswa dapat			sikap			
			menentukan ΔH						
			berdasarkan data						
			energi						
			pembentukan						
6-7	Mahasiswa	Laju Reaksi	1. Mahasiswa dapat	Team Project	Melalui modul	Jenis :	19%	KB: 2 x 50'	4,6,7,8
	mampu		menyebutkan	Based Learning	yang disusun oleh	• Penilaian			
	menganalisis		pengertian laju reaksi	Presentation	mahasiswa presenter	penyusunan		PT: 2 x 60'	
	konsep laju reaksi	Review 1	2. Mahasiswa dapat	based on guided	dan presentasi	modul			

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

	berdasarkan data- data hasil percobaan	Melalui Edmodo	menuliskan pernyataan laju reaksi 3. Mahasiswa dapat menjelaskan faktor- faktor laju reaksi 4. Mahasiswa dapat menjelaskan berbagai jenis orde reaksi 5. Mahasiswa dapat menentukan orde reaksi pereaksi	inquiry • Class Discusion	berbasis inkuiri terbimbing, mahasiswa mampu menganalisis konsep tentang Laju Reaksi	pembelajaran Laju Reaksi (kognitif) Penilaian tertulis (kognitif) Penilaian presentasi (psikomotorik) Penilaian sikap (afektif) Kriteria: Kesesuaian dengan indikator rubrik penilaian modul, capaian sub-cpmk, presentasi dan sikap		BM: 2 x 60'	
8	Mahasiswa	Kesetimbanga	1. Mahasiswa dapat	I	UTS Malaki madul	<u>Jenis :</u>	9%	KB: 2 x 50'	4,6,7,8
9	mampu	n Kimia	membedakan	 Team Project Based Learning 	Melalui modul yang disusun oleh	• Penilaian	7%	KD. 2 X 30	4,0,7,8
	menganalisis		reaksi	Presentation	mahasiswa presenter	penyusunan		PT: 2 x 60'	
	konsep tentang		kesetimbangan	based on guided	dan presentasi	modul			

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

	kesetimbangan kimia berdasarkan unsur makroskopik, mikroskopik dan simboliknya		homogen dan heterogen 2. Mahasiswa dapat menuliskan persamaan Kc dan Kp 3. Mahasiswa dapat menentukan Kc dan Kp 4. Mahasiswa dapat menentukan arah pergeseran kesetimbangan berdasarkan faktor- faktornya	inquiry • Class Discusion	berbasis inkuiri terbimbing, mahasiswa mampu menganalisis konsep tentang Kesetimbangan Kimia	pembelajaran Kesetimbangan Kimia (kognitif) • Penilaian tertulis (kognitif) • Penilaian presentasi (psikomotorik) • Penilaian sikap (afektif) Kriteria: Kesesuaian dengan indikator rubrik penilaian modul, capaian sub-cpmk, presentasi dan sikap		BM: 2 x 60'	
10	Mahasiswa	Larutan Asam	1. Mahasiswa dapat	Team Project	Melalui modul	Jenis :	9%	KB: 2 x 50'	5,6,7,8
	mampu	Basa	menjelaskan ciri-	Based Learning	yang disusun oleh	• Penilaian		DT 2 (0)	
	menganalisis		ciri larutan asam	Presentation	mahasiswa presenter	penyusunan		PT: 2 x 60'	
	keterkaitan antara		dan basa	based on guided	dan presentasi	modul			

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

	konsep dan fakta tentang larutan asam basa berdasarkan contoh sehari-hari dari kearifan lokal/nasional secara efektif melalui pembelajaran tematik		3.	Mahasiswa dapat menentukan persamaan reaksi asam basa Mahasiswa dapat menentukan pH larutan asam dan basa Mahasiswa dapat memperkirakan pH larutan berdasarkan indikator	inquiry • Class Discusion	berbasis inkuiri terbimbing, mahasiswa mampu menganalisis konsep tentang Larutan Asam Basa	pembelajaran Larutan Asam Basa (kognitif) • Penilaian tertulis (kognitif) • Penilaian presentasi (psikomotorik) • Penilaian sikap (afektif) Kriteria: Kesesuaian dengan indikator rubrik penilaian modul, capaian sub-cpmk, presentasi dan		BM: 2 x 60'	
11	Mahasiswa	Hidrolisis	1.	Mahasiswa dapat	• Team Project	Melalui modul	sikap <u>Jenis :</u>	4%	KB: 2 x 50'	5,6,7,8
	mampu menganalisis keterkaitan antara	Garam		menentukan sifat garam berdasarkan reaksi penguraian	Based Learning • Presentation based on guided	yang disusun oleh mahasiswa presenter dan presentasi	Penilaian penyusunan modul		PT: 2 x 60'	

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

	konsep dan fakta tentang hidrolisis garam berdasarkan data hasil percobaan		2.	oleh air Mahasiswa dapat menentukan pH larutan garam	inquiry • Class Discusion	berbasis inkuiri terbimbing, mahasiswa mampu menganalisis konsep tentang Hidrolisis Garam	pembelajaran Hidrolisis Garam (kognitif) • Penilaian tertulis (kognitif) • Penilaian presentasi (psikomotorik) • Penilaian sikap (afektif) Kriteria: Kesesuaian dengan indikator rubrik penilaian modul, capaian sub-cpmk, presentasi dan		BM: 2 x 60'	
							presentasi dan sikap			
12	Mahasiswa mampu menganalisis keterkaitan antara	Larutan Penyangga Review 2	1. 2.	Mahasiswa dapat mengidentifikasi larutan penyangga Mahasiswa dapat	Team ProjectBased LearningPresentationbased on guided	Melalui modul yang disusun oleh mahasiswa presenter dan presentasi	Jenis : • Penilaian penyusunan modul	11%	KB: 2 x 50' PT: 2 x 60'	1,5,6,7,8

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

	konsep dan fakta tentang larutan penyangga berdasarkan data hasil percobaan	Melalui Edmodo	menentukan komponen larutan penyangga 3. Mahasiswa dapat menjelaskan cara pembuatan larutan penyangga 4. Mahasiswa dapat menentukan pH larutan penyangga 5. Mahasiswa dapat menjelaskan cara kerja larutan penyangga dalam tubuh makhluk hidup	inquiry • Class Discusion	berbasis inkuiri terbimbing, mahasiswa mampu menganalisis konsep tentang Larutan Penyangga	pembelajaran Larutan Penyangga (kognitif) • Penilaian tertulis (kognitif) • Penilaian presentasi (psikomotorik) • Penilaian sikap (afektif) Kriteria: Kesesuaian dengan indikator rubrik penilaian modul, capaian sub-cpmk, presentasi dan sikap	404	BM: 2 x 60'	
13	Mahasiswa mampu menganalisis keterkaitan antara	Titrasi Asam Basa	Mahasiswa dapat menentukan titik ekivalen dari suatu titrasi	Team Project Based LearningPresentation based on guided	Melalui modul yang disusun oleh mahasiswa presenter dan presentasi	Jenis: • Penilaian penyusunan modul	4%	KB: 2 x 50' PT: 2 x 60'	5,6,7,8

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

	konsep dan fakta		2. Mahasiswa dapat	inquiry	berbasis inkuiri	pembelajaran		BM: 2 x 60'	
	tentang titrasi		membuat kurva	• Class	terbimbing,	Titrasi Asam			
	asam basa		hasil titrasi	Discusion	mahasiswa mampu	Basa			
	berdasarkan data		berdasarkan		menganalisis konsep	(kognitif)			
	hasil percobaan		perhitungan pH		tentang Titrasi	 Penilaian 			
					Asam Basa	tertulis			
						(kognitif)			
						 Penilaian 			
						presentasi			
						(psikomotorik)			
						 Penilaian sikap 			
						(afektif)			
						Kriteria:			
						Kesesuaian			
						dengan indikator			
						rubrik penilaian			
						modul, capaian			
						sub-cpmk,			
						presentasi dan			
						sikap			
14	Mahasiswa	Ksp	 Mahasiswa dapat 	 Team Project 	 Melalui modul 	<u>Jenis :</u>	4%	KB: 2 x 50'	5,6,7,8
	mampu		menentukan Ksp	Based Learning	yang disusun oleh	• Penilaian			
	menganalisis		dari data kelarutan	 Presentation 	mahasiswa presenter	penyusunan		PT: 2 x 60'	
	konsep tentang		dan sebaliknya	based on guided	dan presentasi	modul			

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

	kelarutan dan hasil kali kelarutan berdasarkan data hasil percobaan		2. Mahasiswa dapat memprediksi terjadinya pengendapan berdasarkan Ksp	inquiry • Class Discusion	berbasis inkuiri terbimbing, mahasiswa mampu menganalisis konsep tentang Ksp	pembelajaran Ksp (kognitif) • Penilaian tertulis (kognitif) • Penilaian presentasi (psikomotorik) • Penilaian sikap (afektif) Kriteria: Kesesuaian dengan indikator rubrik penilaian modul, capaian sub-cpmk, presentasi dan		BM: 2 x 60'	
15	Menganalisis	Sistem Koloid	1. Mahasiswa dapat	Team Project	Melalui modul	sikap Jenis:	9%	KB: 2 x 50'	2,5,6,7,8
	konsep dan fakta tentang sistem	Sistem Roloid	menjelaskan ciri- ciri koloid	Based Learning • Presentation	yang disusun oleh mahasiswa presenter	• Penilaian penyusunan	7/0	PT: 2 x 60'	2,2,0,7,0
	koloid dalam	Review 3	berdasarkan	based on guided	dan presentasi	modul			
	kehidupan sehari-	Melalui	perbandingan	inquiry	berbasis inkuiri	pembelajaran		BM: 2 x 60'	

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

16	mengidentifikasi jenis koloid dari suatu materi berdasarkan fase pendispersi dan medium pendispersinya 3. Mahasiswa dapat menjelaskan sifat- sifat koloid 4. Mahasiswa dapat menjelaskan cara pembuatan koloid	Koloid	(kognitif) Penilaian presentasi (psikomotorik) Penilaian sikap (afektif) Kriteria: Kesesuaian dengan indikator rubrik penilaian modul, capaian sub-cpmk, presentasi dan sikap	
10		0710		

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

No. Dokumen No. Revisi Hal. 1 dari 2

Daftar Referensi:

- 1. Apriani, H & Rizkiana, F. 2018. Pengaruh Smash Book Berbasis Inkuiri Terbimbing Terhadap Motivasi Belajar Siswa Pada Materi Larutan Penyangga. Quantum: Jurnal Inovasi Pendidikan Sains, 9(2), 84-91
- 2. Arnelli & Astuti, Y. 2019. Kimia Koloid dan Permukaan. Yogyakarta: Deepublish
- 3. Effendy. 2015. A-Level Chemistry For Senior High School Volume 1B. Malang: Bayumedia Publishing
- 4. Effendy. 2015. A-Level Chemistry For Senior High School Volume 2A. Malang: Bayumedia Publishing.
- 5. Effendy. 2015. A-Level Chemistry For Senior High School Volume 2B. Malang: Bayumedia Publishing
- Purba, M. 2015. Kimia untuk SMA/MA Kelas XI. Jakarta: Erlangga
- 7. Simanjuntak, H & Parulian, H.G. 2020. Buku Ajar Kimia. Bandung: Widina Bhakti Persada.
- 8. Sudarmo, U & Mitayani, N. 2017. Kimia Untuk SMA/MA Kelas XI Kurikulum 2013 Yang Disempurnakan Peminatan Matematika dan Ilmu Pengetahuan Alam. Jakarta: Erlangga.

Tugas mahasiswa dan penilaiannya

Tugas:

- 1. Membuat proyek modul pembelajaran berkelompok (lembar dan rubrik penilaian terlampir)
- 2. Melaksanakan presentasi kelompok (lembar dan rubrik penilaian terlampir)

Penilaian:

Nilai modul (M)= 60% x skor total yang diperoleh Nilai Presentasi (P)= 40% x skor total yang diperoleh Nilai tugas (NT) = M + P

Jl.Adhyaksa No.2 Kayu Tangi Banjarmasin 70123. Telp/Facs (0511) 3304852. www.uniska-bjm.ac.id

FORMULIR RENCANA PEMBELAJARAN SEMESTER (RPS)

No. Dokumen No. Revisi Hal. 1 dari 2

Penentuan nilai akhir:

: 10% Bobot Nilai Harian/kehadiran (NH) Bobot Nilai Tugas (NT) :50% Bobot Nilai Ujian Tengah Semester (UTS) : 20% Bobot Nilai Ujian Akhir Semester (UAS) : 20%

: NH + NT + UTS + UASNilai Akhir

100

No	Rentang	Nilai	Golongan
1	80 - 100	A	Istimewa
2	75 - 79	B+	Baik sekali
3	70 - 74	В	Baik
4	65 - 69	C+	Cukup baik
5	60 - 64	С	Cukup
6	45 – 59	D	Kurang
7	< 45	Е	Sangat kurang

Penerbit:

Universitas Islam Kalimantan Muhammad Arsyad Al -Banjary

Alamat:

Gedung A UPT Publikasi dan Pengelolaan Jurnal Universitas Islam Kalimantan Muhammad Arsyad Al-Banjary

Jl. Adhyaksa No. 2 Kayutangi Banjarmasin, Kalimantan Selatan

Telepon: 0511 - 3304352

FAX: 0511

