

11.36-11.39		Q&A
11.39-11.48	JESSD-105	Relative and absolute sea level change variability in the Palabuhanratu Bay waters
		Author Eva Novita ^{1,4} , Masita Dwi Mandini Manessa ² * and Mufti Petala Patria ³
		Affiliation
		¹ Master Program of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia
		² Department of Geography, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia

Time (AM/GMT+7)	ID	Event		
		³ Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia ⁴ Geospatial Information Agency of Indonesia, Bogor, Indonesia		
11.48-11.51		Q&A		
11.51-12.00	JESSD-30	Characteristics and antioxidant activity of liquid smoke produced from gelam wood (Melaleuca cajuputi), alaban wood (Vitex pubescens Vahl), and coconut shells (Cocos nucifera L.) Author Ahmad Budi Junaidi ^{1,2,*} , Abdullah ¹ , Utami Irawati ¹ , Yuspihana Fitrial ³ , and Uripto Trisno Santoso ¹		
		Affiliation ¹ Program Study of Chemistry, Faculty of Mathematic and Natural Science, Lambung ULM JI. A. Yani km 36 Banjarbaru Kalimantan Selatan-Indonesia ² Doctoral Program Study of Agriculture Science, Lambung Mangkurat University JI. Ahmad Yani km 36 Banjarbaru Kalimantan Selatan-Indonesia ³ Program Study of Fishery Product Processing, Faculty of Fisheries and Marine, ULM JI. A. Yani km 36 Banjarbaru Kal Sel-Indonesia		
12.00-12.03		Q&A		
12.03-12.12	JESSD-70	Methane Gas Management Policy Based on Emission Estimates at Gunung Kupang Final Processing Site Landfill Author Nurul Listiyani ^{1*} , Khenza Atthaya Namira Yulianto ² Affiliation ¹ Legal Studies, Faculty of Law, Islamic University of Kalimantan MAB Banjarmasin, Banjarmasin, 70123, Indonesia ² Environmental Engineering, Faculty of Engineering, Sepuluh Nopember Institute of Technology, Surabaya, 60111, Indonesia		
12.12-12.15		Q&A		
12.15-12.24	JESSD-73	Separation performance of lithium and calcium from synthetic geothermal brine using electric field-assisted membrane Author D P A Sudarmaja ¹ , V S H Sujoto ¹ , C E Suryanaga ¹ , H T B M Petrus ^{1*} , Sutijan ¹ and W Astuti ² Affiliation ¹ Department of Chemical Engineering (Sustainable Mineral Processing Research Group), Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika No. 2 Kampus UGM Bulaksumur, D. I. Yogyakarta 55281, Indonesia ² Research Unit for Mineral Technology, Indonesian Research and Innovation Agency (BRIN), Jl. Ir. Sutami Km. 15, Tanjung Bintang, Lampung Selatan, Lampung 35361, Indonesia		
12.24-12.27		Q&A		
12.27-12.36	JESSD-74	Biodegradable Food Container from Rice Straw and Sugarcane Bagasse with Orange Peel Addition Author E.M.S.E.Tibalia ¹ , Joko Wintoko ¹ , Chandra Wahyu Purnomo ¹		

JESSD-70

Methane Gas Management Policy Based on Emission Estimates at Gunung Kupang Final Processing Site Landfill

Nurul Listiyani^{1*}, Khenza Atthaya Namira Yulianto²

¹ Legal Studies, Faculty of Law, Islamic University of Kalimantan MAB Banjarmasin, Banjarmasin, 70123, Indonesia

² Environmental Engineering, Faculty of Engineering, Sepuluh Nopember Institute of Technology, Surabaya, 60111, Indonesia

Email: : nurullistiyani05@gmail.com

Abstract. Methane gas (CH4) is one of the main Greenhouse Gases (GHG), which contributes 14.5% to global warming. Gunung Kupang Final Processing Site is a Final Processing Site that serves the Banjarbaru City area in addition to the Banjarbakula Regional Final Processing Site, with waste coming in every day which continues to increase and has the potential to generate emissions. The purpose of this research is to analyze the characteristics in the form of waste generation and composition at the Gunung Kupang Final Processing Site and to analyze the estimation of methane gas from the Gunung Kupang Final Processing Site landfill activities using LandGEM methods. The methods used in this study are the Landfill Gas Emission Model (LandGEM). Total greenhouse gas emissions produced in the LandGEM method from 2014- 2020 were 3.96 Gg/year. It certainly need for local government participation in the form of waste management policies which has an impact on reducing methane gas.

*The title on abstract of paper section is just temporary so the title can be changed

0

METHANE GAS MANAGEMENT POLICY BASED ON ESTIMATION AT GUNUNG KUPANG FINAL PROCESSING SITE LANDFILL

BACKGROUNDS

Improper management of landfills can lead to uncontrolled amounts of LFG gas emission and nature disasters. Most of the waste in Indonesia's Final Processing Site was not processed first and directly dumped into the ground wihout adeqate layers so the material can cause environmental pollution such soil and air pollution

BACKGROUNDS

Gunung Kupang Final Processing Site located in Banjarbaru city and divided into two landfill cells with the second cells still operating from 2021 until now. Methane gas produced by the landfill is converted into biogas and there's no other method to treat methane gas.

Methane gas in Gunung Kupang Final Processing Site landfill never measured with real measuring instruments. The role of governments in protecting and managing the environment through waste management policies must be seriously considered.

BACKGROUNDS

TYPE OF RESEARCH

Qualitative-quantitative research. Methane gas production is calculated using the LandGEM method and through a sociological approach, waste management policies will become the legal umbrella for local government in determining appropriate strategy

RESEARCH TIME

The research was conducted from January-June 2023

RESEARCH EQUIPMENT

Sampling equipment are rubber gloves, hanging scales, bamboo baskets, 500 liter density box, sickles, masks, safety shoes/boots, stationery and others.

TYPES OF DATA

Primary data is the generation and existing condition of Gunung Kupang Final Processing Site landfill. Secondary data consists of Gunung Kupang Final Processing Site design capacity, planned year operation, and the waste management policies

METHODS

The main procedures are sampling of waste generation and composition, calculation waste data entering Gunung Kupang, population and landfill waste projection, landfill service life estimation, analysis of estimated methane gas production, determine the appropriate policy based on result analysis Data collection techniques divided into 5 methods which are observation, interview, experiment, documentation, and literature studies

METHODS

MEASUREMENT OF METHANE GAS USING LANDGEM Banjarbaru City and Gunung Kupang landfill waste projection was calculated for the first step using the least square method with r amount of 0,9322

Source: Research Data, 2023

'ear	Least-Square
021	258,753
022	266,041
023	271,500
024	276,960
025	282,420
026	287,879
027	293,339
028	298,798
029	304,258
030	309,717
031	315,177
032	320,636
033	326,096

Table 1. Population Projection Calculation with Least Square Method

Total estimated methane gas production using LandGEM on landfill cell 1 is 3,96 Gg/year

PROVIDE LANDFILL CHARACT	ERISTICS	separa selections	Indust Units	Mplyew .	
andfill Open Year	2014				
andfill Cleaure Year	2020		Year	Input Units	Calculated Units
ave Model Calculate Clinure Year?	C Yas # No	and the second se		(Mg/year)	(short tons/year)
laste Dosign Capacity	- Constrainty	mégegrams -	2014	29.838	32,822
		Including the second seco	2015	33,734	37,107
2 DETERMINE MODEL PARAMETERS			2016	37.82=	41,606
			2017	42,103	46,313
ethane Generation Rate, & (year')			2018	46,584	01;242
CAA Conventional - 0.05			2019	61,229	\$6,363
stential Methane Generation Capacit	y. Le (m ³ /Mg3		2026	49.299	54,339
CAA Conventional - 170			2021		
IOC Concentration (ppmv as fearage)	1		2972		
CAA - 4,000	•		2223		
ethane Content (% by volume)	(192)		2026		
CAA - 50% by volume			2025		
			3836		

Table 2.EstimatedMethanes GasEmission fromLandfill Cell 1

RESULT AND DISCUSSION

year	Mg/Year	gg/Year
2014	160	0.00
2015	166	0.17
2016	344	0.34
2017	537	0.54
2018	745	0.74
2019	967	0.97
2020	1.204	1.20
Т	otal	3.96
(5	Source: Research Data. 20)23)

RESULTAND DISCUSSION

Total estimated methane gas production using LandGEM on landfill cell 2 is 1,9351 Gg/year

 Table 3. Estimated Methanes Gas Emission from
 Landfill Cell 2

Year	Mg/Year	Gg/Year
2021	0	0.0000
2022	315	0.3152
2023	641	0.6410
2024	979	0.9789
	Total	1.9351

			-
	NP	LET R	S2
201		u	.
Charles of the	0.00	C. ()	

PROVIDE LANDFILL CHARAC	ne or Identifier TERISTICS	TPA Gunung Kupang Clear ALL Non-Parameter Inputs/Selections	4 ENTER	WASTE ACCI	EPTANCE RA
ullill Open Year	2021		ingua crime i	be differen	Line and the
re Model Calculate Closure Year?	Ves # No		Year	(Mg/year)	(short tons/yea
ste Design Capacity		megagrante +	2021	56,835	62,5
		1	2022	61,523	67,6
		Restore Delault Model	2023	66,570	73,2
DETERMINE MODEL PARAMETERS Parameters			2024	70,056	77,0
bane Generation Rate, k (year')			2025		
AA Conventional - 0.05	•		2026		
ential Methane Generation Capacit	ly, L ₁ (m ² /Mg)		2027		
AA. Conventional - 170			2028		
OC Concentration (ppmv as herane	1		2029		
AA - 4 000			2030		
thane Content (% hy volume)			2031		
AA - 50% by volume			2032		
			2033		

6.000E+03

5.000E+03

4.000E+03 sup 3.000E+03 3.000E+03 2.000E+03

1.000E+03

0.000E+00

The effectiveness of waste management can only be achieved through 3 (three) pillars, namely the government, the wider community and the business world which work in an integral (integrated), comprehensive (overall) and mutualistic (mutually beneficial) manner. Implicitly this concept carries the principle of mutual cooperation in waste management as a strategic social capital (Islamy, 2009).

- Based on LandGEM , methane gas estimation emissions in latest Gunung Kupang landfill cell from 2021-2024 is 1.935 Gg/year
- Effectiveness of waste management can only be achieved through the government, the wider community and the business world.
- Limitation of this research lies in the weak regulations governing waste management in Banjarbaru City which procedurally forms the legal basis for determining management steps and strategies, one of which is the methane gas measurement strategy at Gunung Kupang Final Processing Site.

CONCLUSION

TO PROTECT OUR PLANET AND ENSURE A SUSTAINABLE **FUTURE FOR** GENERATIONS TO COME.

St -0010/0122 10.01/11 111.01.01 2022

CERTIFICATE

as a PRESENTER to

Nurul Listiyani

Paper ID: JESSD-123

"Determination Strategies for HDI Improvement Using SWOT Matrix Toward Sustainable Development and Good Environment"

in 3rd International Symposium (Virtual) of Earth, Energy, Environmental Science and Sustainable Development August 27, 2022

https://symposiumjessd.ui.ac.id/ - - https://scholarhub.ui.ac.id/jessd/

August 29, 2022 Director, School of Environmental Science, Universitas Indonesia

3rd International Symposium (Virtual) of Earth, Energy, Environmental Science and Sustainable Development August 27-28, 2022

Sponsored by:

